CaltechTHESIS
  A Caltech Library Service

Dating and Characterizing Late Holocene Earthquakes Using Paleomagnetics

Citation

Salyards, Stephen Lowell (1989) Dating and Characterizing Late Holocene Earthquakes Using Paleomagnetics. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/68QC-3J13. https://resolver.caltech.edu/CaltechTHESIS:10172013-145007953

Abstract

In this thesis I apply paleomagnetic techniques to paleoseismological problems. I investigate the use of secular-variation magnetostratigraphy to date prehistoric earthquakes; I identify liquefaction remanent magnetization (LRM), and I quantify coseismic deformation within a fault zone by measuring the rotation of paleomagnetic vectors.

In Chapter 2 I construct a secular-variation reference curve for southern California. For this curve I measure three new well-constrained paleomagnetic directions: two from the Pallett Creek paleoseismological site at A.D. 1397-1480 and A.D. 1465-1495, and one from Panum Crater at A.D. 1325-1365. To these three directions I add the best nine data points from the Sternberg secular-variation curve, five data points from Champion, and one point from the A.D. 1480 eruption of Mt. St. Helens. I derive the error due to the non-dipole field that is added to these data by the geographical correction to southern California. Combining these yields a secular variation curve for southern California covering the period A.D. 670 to 1910, with the best coverage in the range A.D. 1064 to 1505.

In Chapter 3 I apply this curve to a problem in southern California. Two paleoseismological sites in the Salton trough of southern California have sediments deposited by prehistoric Lake Cahuilla. At the Salt Creek site I sampled sediments from three different lakes, and at the Indio site I sampled sediments from four different lakes. Based upon the coinciding paleomagnetic directions I correlate the oldest lake sampled at Salt Creek with the oldest lake sampled at Indio. Furthermore, the penultimate lake at Indio does not appear to be present at Salt Creek. Using the secular variation curve I can assign the lakes at Salt Creek to broad age ranges of A.D. 800 to 1100, A.D. 1100 to 1300, and A.D. 1300 to 1500. This example demonstrates the large uncertainties in the secular variation curve and the need to construct curves from a limited geographical area.

Chapter 4 demonstrates that seismically induced liquefaction can cause resetting of detrital remanent magnetization and acquisition of a liquefaction remanent magnetization (LRM). I sampled three different liquefaction features, a sandbody formed in the Elsinore fault zone, diapirs from sediments of Mono Lake, and a sandblow in these same sediments. In every case the liquefaction features showed stable magnetization despite substantial physical disruption. In addition, in the case of the sandblow and the sandbody, the intensity of the natural remanent magnetization increased by up to an order of magnitude.

In Chapter 5 I apply paleomagnetics to measuring the tectonic rotations in a 52 meter long transect across the San Andreas fault zone at the Pallett Creek paleoseismological site. This site has presented a significant problem because the brittle long-term average slip-rate across the fault is significantly less than the slip-rate from other nearby sites. I find sections adjacent to the fault with tectonic rotations of up to 30°. If interpreted as block rotations, the non-brittle offset was 14.0+2.8, -2.1 meters in the last three earthquakes and 8.5+1.0, -0.9 meters in the last two. Combined with the brittle offset in these events, the last three events all had about 6 meters of total fault offset, even though the intervals between them were markedly different.

In Appendix 1 I present a detailed description of my standard sampling and demagnetization procedure.

In Appendix 2 I present a detailed discussion of the study at Panum Crater that yielded the well-constrained paleomagnetic direction for use in developing secular variation curve in Chapter 2. In addition, from sampling two distinctly different clast types in a block-and-ash flow deposit from Panum Crater, I find that this flow had a complex emplacement and cooling history. Angular, glassy "lithic" blocks were emplaced at temperatures above 600° C. Some of these had cooled nearly completely, whereas others had cooled only to 450° C, when settling in the flow rotated the blocks slightly. The partially cooled blocks then finished cooling without further settling. Highly vesicular, breadcrusted pumiceous clasts had not yet cooled to 600° C at the time of these rotations, because they show a stable, well clustered, unidirectional magnetic vector.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Geophysics; Geology
Degree Grantor:California Institute of Technology
Division:Geological and Planetary Sciences
Major Option:Geophysics
Minor Option:Geology
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Sieh, Kerry E. (advisor)
  • Kirschvink, Joseph L. (co-advisor)
Thesis Committee:
  • Clayton, Robert W. (chair)
  • Sieh, Kerry E.
  • Allen, Clarence R.
  • Kirschvink, Joseph L.
Defense Date:17 June 1988
Non-Caltech Author Email:salyards (AT) epss.ucla.edu
Funders:
Funding AgencyGrant Number
Beno Gutenberg FellowshipUNSPECIFIED
USGS14-08-0001-G1086
USGS14-08-0001-G1370
USGS14-08-0001-G1184
USGS14-08-0001-21980
USGS14-08-0001-21981
USGS14-08-0001-21854
USGS14-08-0001-21210
NSFERA-8351370
NSFERA-8121377
Record Number:CaltechTHESIS:10172013-145007953
Persistent URL:https://resolver.caltech.edu/CaltechTHESIS:10172013-145007953
DOI:10.7907/68QC-3J13
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:7998
Collection:CaltechTHESIS
Deposited By: Benjamin Perez
Deposited On:17 Oct 2013 22:56
Last Modified:20 Oct 2021 00:29

Thesis Files

[img]
Preview
PDF - Final Version
See Usage Policy.

33MB

Repository Staff Only: item control page