Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 1, 1983 | public
Report Open

Application of plasticity theory to soil behavior : a new sand model

Abstract

The representation of rheological soil behavior by constitutive equations is a now branch of soil mechanics which has been expanding for 30 years. Based on continuum mechanics, numerical methods (finite elements) and experimental techniques, this now discipline allows practicing engineers to solve complex geotechnical problems. Although all soils are constituted of discrete mineral particles, forces and displacements within them are represented by continuous stresses and strains. Most stress-strain relationships, which describe the soil behavior, are derived from plasticity theory. Originated for metals, the conventional plasticity is presented and illustrated simultaneously with a metal and a soil model. Each plasticity concept may be criticized when applied to soil. A recent theory, called "bounding surface plasticity," generalizes the conventional plasticity and describes more accurately the cyclic responses of metals and clays. This new theory is first presented and linked with the conventional plasticity, then applied to a new material, sand. Step by step a new sand model is constructed, mainly from data analysis with an interactive computer code. In its present development, only monotonic loading s are investigated. In order to verify the model ability to describe sand responses, isotropic, drained and undrained tests on the dense Sacramento River sand are simulated numerically and compared with real test results and predictions with another model. Finally the new constitutive equation, which was formulated in the p-q space for axisymmetric loadings, is generalized in the six-dimensional stress state with the assumption of isotropy and a particular Lode's angle contribution. This new model is ready to be used in finite element codes to represent a sand behavior.

Additional Information

PhD, 1984

Files

SML-83-01.pdf
Files (10.9 MB)
Name Size Download all
md5:744d963227ad4db8a9779390767e6af0
10.9 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023