Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 22, 2004 | public
Report Open

Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory

Abstract

In this paper, we present a theoretical framework for design and analysis of distributed flocking algorithms. Two cases of flocking in free-space and presence of multiple obstacles are considered. We present three flocking algorithms: two for free-flocking and one for constrained flocking. A comprehensive analysis of the first two algorithms is provided. We demonstrate the first algorithm embodies all three rules of Reynolds. This is a formal approach to extraction of interaction rules that lead to the emergence of collective behavior. We show that the first algorithm generically leads to regular fragmentation, whereas the second and third algorithms both lead to flocking. A systematic method is provided for construction of cost functions (or collective potentials) for flocking. These collective potentials penalize deviation from a class of lattice-shape objects called alpha-lattices. We use a multi-species framework for construction of collective potentials that consist of flock-members, or alpha-agents, and virtual agents associated with alpha-agents called beta- and gamma-agents. We show that the tracking/migration problem for flocks can be solved using an algorithm with a peer-to-peer architecture. Each node (or macro-agent) of this peer-to-peer network is the aggregation of all three species of agents. The implication of this fact is that ``flocks need no leaders''. We discuss what constitutes flocking and provide a universal definition of ``flocking'' for particle systems that has the same role as ``Lyapunov stability'' for nonlinear dynamical systems. By ``universal'', we mean independent of the method of trajectory generation for particles. Various simulation results are provided that demonstrate the effectiveness of our novel algorithms and analytical tools. This includes performing 2-D and 3-D flocking, split/rejoin maneuver, and squeezing maneuver for 40 to 150 agents (e.g. particles and UAVs).

Files

flocking-tr04-005.pdf
Files (1.6 MB)
Name Size Download all
md5:f77603d4a9beafc5544b8e3ce4291d03
1.6 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023