Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 13, 2005 | Published + Supplemental Material
Journal Article Open

RNA–protein recognition: Single-residue ultrafast dynamical control of structural specificity and function

Abstract

The transcription antiterminator IN protein from bacteriophage x uses its arginine-rich motif to specifically bind a stem-loop RNA hairpin (boxB) as a bent alpha-helix. A single stacking interaction between a tryptophan (Trp-18) and an adenosine (A7) in the RNA loop is robust and necessary for antitermination activity in vivo. Previously, femtosecond fluorescence up-conversion experiments from this laboratory indicated that the N/boxB complex exists in a dynamical two-state equilibrium between stacked and unstacked conformations and that the extent of stacking depends on the identity of peptide residues 14 and 15. In the present work, we have combined transient absorption and fluorescence up-conversion to determine the nature of interactions responsible for this sequence-dependent behavior. Analysis of mutant complexes supports the idea that the beta-carbon of residue 14 enforces the stacked geometry by hydrophobic interaction with the ribose of A7, whereas a positive charge at this residue plays only a secondary role. A positive charge at position 15 substantially disfavors the stacked state but retains much of the binding energy. Remarkably, in vivo antitermination experiments show strong correlation with our femtosecond dynamics, demonstrating how conformational interplay can control the activity of a macromolecular machine.

Additional Information

© 2005 by the National Academy of Sciences. Contributed by Ahmed H. Zewail, August 2, 2005. Published online before print August 29, 2005, 10.1073/pnas.0506181102. We thank Prof. Naomi Franklin (University of Utah, Salt Lake City) for the two-plasmid N expressor-β-gal reporter constructs; Prof. Douglas Turner for helpful comments, Dr. Adam Frankel (now at University of British Columbia, Vancouver) for help with the transcription antitermination assay, Dr. Suzanna Horvath for purification of some peptides used in this work, and Ms. Nancy Guillen for help with measurements of binding constants. This work was supported by the National Science Foundation through the Laboratory of Molecular Sciences, making it possible to integrate expertise in chemical physics and molecular biology.

Attached Files

Published - XIApnas05.pdf

Supplemental Material - 06181Fig7.pdf

Supplemental Material - 06181Fig8.pdf

Files

06181Fig7.pdf
Files (829.2 kB)
Name Size Download all
md5:7468209850f98455f34dc62a57be2fc5
73.2 kB Preview Download
md5:86629c48c8e1eaa88e864f239bbaa239
107.7 kB Preview Download
md5:bcd963cd555c220256a5afe2e9bd7ad9
648.3 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 13, 2023