Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 18, 1974 | Published
Journal Article Open

Nonlinear gas oscillations in pipes. Part 2. Experiment

Sturtevant, B.

Abstract

Forced nonlinear acoustic oscillations near the resonant frequency of closed and open tubes are studied experimentally. In particular, the motion in tubes terminated with different orifice plates is studied, and comparison is made with second- and third-order theories of the motion which contain an adjustable end-wall reflexion coefficient. It is found that oscillations at resonance in an open tube exhibit remarkably large amplitudes despite the fact that in some cases shock waves are emitted from the open end. For oscillations at resonance in a closed tube, the effect of substituting an orifice plate for the solid end wall is to reduce the amplitude and thicken the compressive portion of the shock waves which occur under these conditions. In both the open-tube and closed-tube experiments the reflexion coefficients which are evaluated by fitting theory to experiment are found to increase with increasing amplitude, in agreement with the observations of previous investigators (Ingard & Ising 1967). In fact, for the open end the same linear dependence upon amplitude is observed, but the constant of proportionality is different. Qualitative differences are observed between the reflexion coefficients of a given orifice at the open-end and the closed-end resonant frequencies; at the open-end frequency the reflexion from the given orifice is less ideal than at the closed-end frequency. The implications of reflexion coefficients dependent on the wave forms are discussed.

Additional Information

Copyright © 1974 Cambridge University Press. Reprinted with permission. (Received 28 March 1973) The author wishes to express his gratitude to his colleague Mr J. Jimenez for many helpful discussions. This work was supported in part. by a grant from the National Aeronautics and Space Administration (NGR 05-002-220).

Attached Files

Published - STUjfm74.pdf

Files

STUjfm74.pdf
Files (2.4 MB)
Name Size Download all
md5:95ab8c718afe54972755bd676810e255
2.4 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023