Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2008 | public
Journal Article

Graphene-based atomic-scale switches

Abstract

Graphene's remarkable mechanical and electrical properties, combined with its compatibility with existing planar silicon-based technology, make it an attractive material for novel computing devices. We report the development of a nonvolatile memory element based on graphene break junctions. Our devices have demonstrated thousands of writing cycles and long retention times. We propose a model for device operation based on the formation and breaking of carbon atomic chains that bridge the junctions. We demonstrate information storage based on the concept of rank coding, in which information is stored in the relative conductance of graphene switches in a memory cell.

Additional Information

© 2008 American Chemical Society. Received June 19, 2008; Revised Manuscript Received July 29, 2008. We thank Gil Refael and Shan-Wen Tsai for helpful discussions. M.B. acknowledges support from the ONR and GRC. M.B., J.B., and B.S. acknowledge support by funding from NSF-NRI and Ross Brown. J.B. acknowledges support from the Caltech Lee Center for advanced networking. C.N.L., W.B., and H.Z. acknowledge the support by NSF CAREER Award DMR/0748910 and ONR/DMEA Award H94003-07-2-0703.

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023