Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 4, 2001 | Published
Journal Article Open

The anticancer drug-DNA complex: Femtosecond primary dynamics for anthracycline antibiotics function

Abstract

The anthracycline-DNA complex, which is a potent agent for cancer chemotherapy, has a unique intercalating molecular structure with preference to the GC bases of DNA, as shown by Rich's group in studies of single-crystal x-ray diffraction. Understanding cytotoxicity and its photoenhancement requires the unraveling of the dynamics under the solution-phase, physiological condition. Here we report our first study of the primary processes of drug function. In a series of experiments involving the drug (daunomycin and adriamycin) in water, the drug-DNA complexes, the complexes with the four nucleotides (dGTP, dATP, dCTP, and dTTP), and the drug-apo riboflavin-binding protein, we show the direct involvement of molecular oxygen and DNA base-drug charge-separation---the rates for the reduction of the drug and dioxygen indicate the crucial role of drug/base/O2 in the efficient and catalytic redox cycling. These dynamical steps, and the subsequent reactions of the superoxide product(s), can account for the photoenhanced function of the drug in cells, and potentially for the cell death.

Additional Information

© 2001, The National Academy of Sciences. Contributed by Ahmed H. Zewail, September 26, 2001. We wish to thank Dr. Spencer Baskin for his devoted effort during many hours of experiments and discussions. This work is supported by the National Science Foundation. H.-C. B. is grateful for financial support from The Wenner-Gren Foundations. The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Attached Files

Published - QUXpnas01.pdf

Files

QUXpnas01.pdf
Files (577.3 kB)
Name Size Download all
md5:bc49ecca461bd696b71cd61115ec38fc
577.3 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 13, 2023