Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 1, 2007 | public
Journal Article Open

A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

Abstract

This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method.

Additional Information

© Copyright 2007 IEEE. Reprinted with permission. Manuscript received March 4, 2005; revised May 17, 2006. [Posted online: 2007-08-13] Recommended by Associate Editor C. T. Abdallah. The work of S. Prajna was supported by AFOSR, NIH/NIMGS Alliance for Cellular Signalling, DARPA, Kitano ERATO Systems Biology Project, and URI.

Files

PRAieeetac07.pdf
Files (665.2 kB)
Name Size Download all
md5:39bddc325170dc2ffe0095feee2bfa1e
665.2 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023