Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1988 | Published
Journal Article Open

A role for glyceraldehyde-3-phosphate dehydrogenase in the development of thermotolerance in Xenopus laevis embryos

Abstract

During heat shock, Xenopus laevis embryos exhibit an increase in the rate of accumulation of lactate and a loss of ATP relative to non-heat- shocked control embryos. These results suggest that heat shock stimulates a shift in energy metabolism to anaerobic glycolysis while at the same time causing an increase in the demand for ATP. We have evidence indicating that the embryo may meet such demands placed on it by increasing the levels of some glycolytic enzymes. In this report, we show that heat shock stimulates increases in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase [( EC 1.2.1.12] GAPDH). The specific activity of GAPDH shows a significant increase after heat shock, which correlates with the accumulation of GAPDH in heat-shocked embryos as detected by immunoblotting. Increases in GAPDH-specific activity are variable, however, and are inversely proportional to the levels of specific activity in control embryos; i.e., constitutive enzyme activity. We further analyzed the heat-enhanced accumulation of GAPDH by electrophoretically separating GAPDH isozymes on nondenaturing polyacrylamide gels. Control embryos exhibit a single isozyme of GAPDH, whereas heat-shocked embryos exhibit two isozymes of GAPDH. When these isozymes are labeled with [35S]methionine, separated by nondenaturing gel electrophoresis, and analyzed by fluorography, a heat-shock protein is found to comigrate with the isozyme unique to the heat-shocked sample. Enzyme activity assays at different temperatures suggest that this isozyme has optimum enzymatic activity only at heat-shock temperatures. We have correlated a 35-kD heat-shock protein (hsp35) with GAPDH using the following evidence: this hsp comigrates with GAPDH on one-dimensional SDS polyacrylamide gels; heat-enhanced increases in GAPDH specific activity correlate with hsp35 synthesis; and hsp35 and GAPDH have similar peptide maps. This relationship also provides a compelling explanation for the restriction of hsp35 synthesis to the vegetal hemisphere cells of heat-shocked early gastrulae reported previously (Nickells, R. W., and L. W. Browder. 1985. Dev. Biol. 112:391-395).

Additional Information

© 1988 by The Rockefeller University Press. RUP grants the public the non-exclusive right to copy, distribute, or display the Work under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/ and http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode. Received for publication 22 February 1988, and in revised form 29 July 1988. The authors would like to thank Dr. M. Bentley, Dr. J. Dulson, Dr. M. Pollock, Dr. J. Heikkila, and Dr. L. Gedamu for helpful discussions of experiments and suggestions regarding the manuscript. This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada and the University of Calgary to L.W. Browder and an Alberta Heritage Foundation for Medical Research research allowance to R.W. Nickells. R.W. Nickells is also the recipient of a Natural Sciences and Engineering Research Council of Canada postgraduate scholarship.

Attached Files

Published - NICjcb88.pdf

Files

NICjcb88.pdf
Files (1.7 MB)
Name Size Download all
md5:e115924d82f30117f5d1ec1d1b1e4a1e
1.7 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023