Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 15, 2005 | Published
Journal Article Open

Origin of artificial electrodynamics in three-dimensional bosonic models

Abstract

Several simple models of strongly correlated bosons on three-dimensional lattices have been shown to possess exotic fractionalized Mott insulating phases with a gapless "photon" excitation. In this paper we show how to view the physics of this "Coulomb" state in terms of the excitations of proximate superfluid. We argue for the presence of ordered vortex cores with a broken discrete symmetry in the nearby superfluid phase and that proliferating these degenerate but distinct vortices with equal amplitudes produces the Coulomb phase. This provides a simple physical description of the origin of the exotic excitations of the Coulomb state. The physical picture is formalized by means of a dual description of three-dimensional bosonic systems in terms of fluctuating quantum mechanical vortex loops. Such a dual formulation is extensively developed. It is shown how the Coulomb phase (as well as various other familiar phases) of three-dimensional bosonic systems may be described in this vortex loop theory. For bosons at half-filling and the closely related system of spin-1/2 quantum magnets on a cubic lattice, fractionalized phases as well as bond- or "box"-ordered states are possible. The latter are analyzed by an extension of techniques previously developed in two spatial dimensions. The relation between these "confining" phases with broken translational symmetry and the fractionalized Coulomb phase is exposed.

Additional Information

© 2005 The American Physical Society (Received 10 August 2004; published 3 March 2005) Stimulating discussions with Leon Balents, Matthew Fisher, Mike Hermele, and Ashvin Vishwanath are gratefully acknowledged. This research is supported by NSF Grant No. PHY-9907949 (O.I.M.) and NSF Grant No. DMR-0308945 (T.S.). T.S. also acknowledges funding from the NEC Corporation, the Alfred P. Sloan Foundation, and an award from The Research Corporation.

Attached Files

Published - MOTprb05a.pdf

Files

MOTprb05a.pdf
Files (699.1 kB)
Name Size Download all
md5:9457db8ae6a288eb730b98b9f1ee7345
699.1 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023