Published June 9, 1997
| Published
Journal Article
Open
Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals
Chicago
Abstract
A parallel technique for fabricating single-electron, solid-state capacitance devices from ordered, two-dimensional closest-packed phases of organically functionalized metal nanocrystals is presented. The nanocrystal phases were prepared as Langmuir monolayers and subsequently transferred onto Al-electrode patterned glass substrates for device construction. Alternating current impedance measurements were carried out to probe the single-electron charging characteristics of the devices under both ambient and 77 K conditions. Evidence of a Coulomb blockade and step structure reminiscent of a Coulomb staircase is presented.
Additional Information
© 1997 American Institute of Physics. Received 3 January 1997; accepted 9 April 1997. This work was supported by the Office of Naval Research, Order No. N00014-95-F0099 and by the Director, Office of Energy Research, Office of Basic Energy Research, Division of Materials Sciences of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the NSF-NYI Program. One author (J.R.H.) acknowledges support from the David and Lucile Packard Foundation, and a Dreyfus fellowship. A second author (G.M.) acknowledges support from the Fulbright Program. Two authors (B.D. and H.M.S.) acknowledge funding from the NSF (DMR-9408780).Attached Files
Published - MARapl97.pdf
Files
MARapl97.pdf
Files
(290.4 kB)
Name | Size | Download all |
---|---|---|
md5:d3170071f0b2c1e68daf526f852cdda6
|
290.4 kB | Preview Download |
Additional details
- Eprint ID
- 4652
- Resolver ID
- CaltechAUTHORS:MARapl97
- Office of Naval Research (ONR)
- N00014-95-F0099
- Department of Energy (DOE)
- DE-AC03-76SF00098
- NSF
- DMR-9408780
- David and Lucile Packard Foundation
- Caltech
- Fulbright Foundation
- Created
-
2006-09-01Created from EPrint's datestamp field
- Updated
-
2021-11-08Created from EPrint's last_modified field