Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 1, 2000 | Published
Journal Article Open

In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest

Abstract

Previous analyses of single neural crest cell trajectories have suggested important roles for interactions between neural crest cells and the environment, and amongst neural crest cells. To test the relative contribution of intrinsic versus extrinsic information in guiding cells to their appropriate sites, we ablated subpopulations of premigratory chick hindbrain neural crest and followed the remaining neural crest cells over time using a new in ovo imaging technique. Neural crest cell migratory behaviors are dramatically different in ablated compared with unoperated embryos. Deviations from normal migration appear either shortly after cells emerge from the neural tube or en route to the branchial arches, areas where cell-cell interactions typically occur between neural crest cells in normal embryos. Unlike the persistent, directed trajectories in normal embryos, neural crest cells frequently change direction and move somewhat chaotically after ablation. In addition, the migration of neural crest cells in collective chains, commonly observed in normal embryos, was severely disrupted. Hindbrain neural crest cells have the capacity to reroute their migratory pathways and thus compensate for missing neural crest cells after ablation of neighboring populations. Because the alterations in neural crest cell migration are most dramatic in regions that would normally foster cell-cell interactions, the trajectories reported here argue that cell-cell interactions have a key role in the shaping of the neural crest migration.

Additional Information

Copyright © 2000 by Company of Biologists. Accepted 4 April; published on WWW 13 June 2000. This work was supported by USPHS HD15527 and a grant from the Muscular Dystrophy Foundation to M.B.F., and a Burroughs-Wellcome PPG (AR42671) to S.F. P.K. would like to thank the Sloan Foundation and the Burroughs-Wellcome Computational Molecular Biology Initiative at Caltech for their generous support. We are grateful to H. McBride and D. Crotty for critical reading of the manuscript.

Attached Files

Published - KULdev00b.pdf

Files

KULdev00b.pdf
Files (450.2 kB)
Name Size Download all
md5:9c9eed3830910b3f224ff3b085ca5060
450.2 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023