Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 15, 1994 | public
Journal Article Open

Prospects for detecting the Christodoulou memory of gravitational waves from a coalescing compact binary and using it to measure neutron-star radii

Abstract

A coalescing compact binary, during its last tenth of a second of life, emits a burst of gravitational waves consisting of a high-frequency ''chirp,'' with frequencies much greater than 100 Hz, superimposed on a gradually growing memory, known as the Christodoulou memory. Most of the memory's growth occurs over the last few hundredths of a second, so its signal has strong Fourier components at f∼100 Hz. The planned LIGO and/or VIRGO broadband gravitational-wave detectors have optimal performance at frequencies around 100 Hz and should be well suited, in terms of frequencies, to detect the growth of the memory amidst the chirp. If one or both of the binary's components is a neutron star (the other being either a neutron star or a black hole), then the growth of the memory will be cut off by the star's tidal disruption. The larger the neutron star's radius the sooner the cutoff and correspondingly the weaker the total memory. Therefore, from a LIGO and/or VIRGO measurement of the memory's strength, one could hope to infer the neutron-star radius. The prospects for such measurements to succeed are evaluated quantitatively and found to be poor because of the weakness of the memory. Even under optimistic circumstances the memory is so weak that only for a black-hole–black-hole binary is there much chance of detecting it, and then the prospects are only marginal.

Additional Information

©1994 The American Physical Society Received 8 April 1994 I would like to thank Kip Thorne, whose insightful suggestion was the inspiration for this paper, for much excellent advice, especially in the preparation of the paper. I would also like to thank Eanna Flanagan, Curt Cutler, Eric Poisson, Draza Markovic, Scott Hughes, and others in the relativity group at Caltech, who all helped me during many useful discussions. Aspects of this work relevant to LIGO were supported by NSF Grant No. PHY-9213508; aspects relevant to LISA, by NASA Grant No. NAGW-2897.

Files

KENprd94.pdf
Files (1.5 MB)
Name Size Download all
md5:8901a482167f6719df88f6b37cf6483a
1.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023