Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 1997 | Published
Journal Article Open

On the origin of the notching effect during etching in uniform high density plasmas

Abstract

We present a two-dimensional Monte Carlo simulation of profile evolution during the overetching step of polysilicon-on-insulator structures, which considers explicitly (a) electric field effects during the charging transient, (b) etching reactions of energetic ions impinging on the poly-Si, and (c) forward inelastic scattering effects. Realistic energy and angular distributions for ions and electrons are used in trajectory calculations through local electric fields near and in the microstructure. Transient charging of exposed insulator surfaces is found to profoundly affect local sidewall etching (notching). Ion scattering contributions are small but important in matching experimental notch profiles. The model is validated by capturing quantitatively the notch characteristics and also the effects of the line connectivity and open area width on the notch depth, which have been observed experimentally by Nozawa et al. [Jpn. J. Appl. Phys. 34, 2107 (1995)]. Elucidation of the mechanisms responsible for the effect facilitates the prediction of ways to minimize or eliminate notching.

Additional Information

© 1997 American Vacuum Society. (Received 14 June 1996; accepted 15 November 1996) The authors are grateful to J. W. Coburn and V. M. Donnelly for insightful suggestions and a critical review of the manuscript. They would also like to thank V. Vahedi for sharing his knowledge of plasma sheaths and proposing the decaying dipole field explanation. This work was partially supported by Caltech start-up funds and by a NSF Career Award to K. P. G. (CTS-9623450).

Attached Files

Published - HWAjvstb97c.pdf

Files

HWAjvstb97c.pdf
Files (561.5 kB)
Name Size Download all
md5:7a516e21cef9a4c6d2be926758396fb7
561.5 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 13, 2023