Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2000 | Published
Journal Article Open

QM(DFT) and MD studies on formation mechanisms of C_(60) fullerenes

Abstract

One of the most puzzling aspects of fullerenes is how such complicated symmetric molecules are formed from a gas of atomic carbons, namely, the atomistic or chemical mechanisms. Are the atoms added one by one or as molecules (C2, C3)? Is there a critical nucleus beyond which formation proceeds at gas kinetic rates? What determines the balance between forming buckyballs, buckytubes, graphite and soot? The answer to these questions is extremely important in manipulating the systems to achieve particular products. A difficulty in current experiments is that the products can only be detected on time scales of microseconds long after many of the important formation steps have been completed. Consequently, it is necessary to use simulations, quantum mechanics and molecular dynamics, to determine these initial states. Experiments serve to provide the boundary conditions that severely limit the possibilities. Using quantum mechanical methods (density functional theory (DFT)) we derived a force field (MSXX FF) to describe one-dimensional (rings) and two-dimensional (fullerene) carbon molecules. Combining DFT with the MSXX FF, we calculated the energetics for the ring fusion spiral zipper (RFSZ) mechanism for formation of C60 fullerenes. Our results shows that the RFSZ mechanism is consistent with the quantum mechanics (with a slight modification for some of the intermediates).

Additional Information

© Institute of Physics and IOP Publishing Limited 2000. Received 2 March 2000; Print publication: Issue 2 (June 2000) SPECIAL ISSUE FEATURING PAPERS FROM THE 7TH FORESIGHT CONFERENCE ON MOLECULAR NANOTECHNOLOGY This work is supported by computational nanotechnology grant from NASA Ames. The facilities of MSC is also supported by funds from NSF (CHE 95-22179), DOE-ASCI, NASA/Ames, Avery Dennison, BP Chemical, Beckman Institute, Chevron Petroleum Technology Co., Chevron Chemical Co., Exxon, Dow Chemical and Seiko–Epson.

Attached Files

Published - HUAnano00.pdf

Files

HUAnano00.pdf
Files (84.0 kB)
Name Size Download all
md5:d0ba9e92f7f2a37e7f21abc08211017d
84.0 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 13, 2023