Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 10, 1997 | public
Journal Article Open

Nonlinear dynamics and pattern formation in turbulent wake transition

Abstract

Results are reported on direct numerical simulations of transition from two-dimensional to three-dimensional states due to secondary instability in the wake of a circular cylinder. These calculations quantify the nonlinear response of the system to three-dimensional perturbations near threshold for the two separate linear instabilities of the wake: mode A and mode B. The objectives are to classify the nonlinear form of the bifurcation to mode A and mode B and to identify the conditions under which the wake evolves to periodic, quasi-periodic, or chaotic states with respect to changes in spanwise dimension and Reynolds number. The onset of mode A is shown to occur through a subcritical bifurcation that causes a reduction in the primary oscillation frequency of the wake at saturation. In contrast, the onset of mode B occurs through a supercritical bifurcation with no frequency shift near threshold. Simulations of the three-dimensional wake for fixed Reynolds number and increasing spanwise dimension show that large systems evolve to a state of spatiotemporal chaos, and suggest that three-dimensionality in the wake leads to irregular states and fast transition to turbulence at Reynolds numbers just beyond the onset of the secondary instability. A key feature of these 'turbulent' states is the competition between self-excited, three-dimensional instability modes (global modes) in the mode A wavenumber band. These instability modes produce irregular spatiotemporal patterns and large-scale 'spot-like' disturbances in the wake during the breakdown of the regular mode A pattern. Simulations at higher Reynolds number show that long-wavelength interactions modulate fluctuating forces and cause variations in phase along the span of the cylinder that reduce the fluctuating amplitude of lift and drag. Results of both two-dimensional and three-dimensional simulations are presented for a range of Reynolds number from about 10 up to 1000.

Additional Information

"Reprinted with the permission of Cambridge University Press." (Received October 1 1996); (Revised July 17 1997) This work would not have been possible without the assistance of Dwight Barkley at the University of Warwick -- his help is greatly appreciated! The author would also like to acknowledge several inspiring discussions with Michael Cross at Caltech, as well as questions and critical feedback from a number of other people: H. Blackburn, M. Gharib, A. Leonard, D. Hill, D. Meiron, A. Roshko, C. H. K. Williamson, S. Balachandar, H.-Q. Zhang, P. Monkewitz and the referees. Financial support was provided by the NSF through Grant No. CDA-9318145 and the ONR through Grant No. N000-94-1-0793. Computational resources were provided by the Center for Advanced Computing Research and the JPL High Performance Computing and Communications program at the California Institute of Technology.

Files

HENjfm97.pdf
Files (1.4 MB)
Name Size Download all
md5:c079824e3c24a348131928ad6aa8b3f5
1.4 MB Preview Download

Additional details

Created:
September 13, 2023
Modified:
October 23, 2023