Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 15, 2003 | public
Journal Article Open

Survey of spinning test particle orbits in Kerr spacetime

Abstract

We investigate the dynamics of the Papapetrou equations in Kerr spacetime. These equations provide a model for the motion of a relativistic spinning test particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter space search for signs of chaotic dynamics by calculating the Lyapunov exponents for a large variety of initial conditions. We find that the Papapetrou equations admit many chaotic solutions, with the strongest chaos occurring in the case of eccentric orbits with pericenters close to the limit of stability against plunge into a maximally spinning Kerr black hole. Despite the presence of these chaotic solutions, we show that physically realistic solutions to the Papapetrou equations are not chaotic; in all cases, the chaotic solutions either do not correspond to realistic astrophysical systems, or involve a breakdown of the test-particle approximation leading to the Papapetrou equations (or both). As a result, the gravitational radiation from bodies spiraling into much more massive black holes (as detectable, for example, by LISA, the Laser Interferometer Space Antenna) should not exhibit any signs of chaos.

Additional Information

©2003 The American Physical Society. Received 17 February 2003; published 28 May 2003. I would like to thank Scott Hughes and Teviet Creighton for providing notes on parametrizing Kerr geodesics in terms of orbital parameters. I also thank Sterl Phinney for his careful reading of the manuscript and perceptive comments. This work was supported in part by NASA grant NAG5-10707.

Files

HARprd03a.pdf
Files (2.5 MB)
Name Size Download all
md5:e6a9e67b7d0943ff62254e3d54acbc3c
2.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023