Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 30, 2008 | Published + Supplemental Material
Journal Article Open

Components of the ubiquitin-proteasome pathway compete for surfaces on Rad23 family proteins

Abstract

Background: The delivery of ubiquitinated proteins to the proteasome for degradation is a key step in the regulation of the ubiquitin-proteasome pathway, yet the mechanisms underlying this step are not understood in detail. The Rad23 family of proteins is known to bind ubiquitinated proteins through its two ubiquitin-associated (UBA) domains, and may participate in the delivery of ubiquitinated proteins to the proteasome through docking via the Rad23 ubiquitin-like (UBL) domain. Results: In this study, we investigate how the interaction between the UBL and UBA domains may modulate ubiquitin recognition and the delivery of ubiquitinated proteins to the proteasome by autoinhibition. We have explored a competitive binding model using specific mutations in the UBL domain. Disrupting the intramolecular UBL-UBA domain interactions in HHR23A indeed potentiates ubiquitin-binding. Additionally, the analogous surface on the Rad23 UBL domain overlaps with that required for interaction with both proteasomes and the ubiquitin ligase Ufd2. We have found that mutation of residues on this surface affects the ability of Rad23 to deliver ubiquitinated proteins to the proteasome. Conclusions: We conclude that the competition of ubiquitin-proteasome pathway components for surfaces on Rad23 is important for the role of the Rad23 family proteins in proteasomal targeting.

Additional Information

© 2008 Goh et al., licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Submission date 24 October 2007. Acceptance date 30 January 2008. Publication date 30 January 2008. We are grateful to Shahram Misaghi for assistance with the affinity column chromatography experiments, to Eric Cooper and Michal-Ruth Schweiger for helpful discussions, and to Yang Kang for help with the model of the HHR23A UBL domain. We thank Hai Rao for the GSTUfd2-myc plasmid and Kiran Madura for the Rad23 antibody. We also thank Jennie Croyle and Melven Chok for assistance during manuscript preparation. This work was funded by grants from the National Institutes of Health CA0970004 (KJW), GM43601 (DF) and CA64888 (PMH) as well as by a scholarship from the Agency of Science, Technology and Research of Singapore (AMG). Authors' contributions: AMG participated in the design of the study, carried out experiments and drafted the manuscript. KJW created the models of the UBL domains, participated in the design of the study and helped to revise the manuscript. SE participated in the design of the study, contributed reagents, and helped to revise the manuscript. RV performed the in vitro deubiquitination studies and helped to revise the manuscript. RJD and DF participated in the design of the study and helped to revise the manuscript. PMH participated in the design and coordination of the study and helped to revise the manuscript. All authors read and approved the final manuscript.

Attached Files

Published - GOHbmcb08.pdf

Supplemental Material - 1471-2091-9-4-s1.ppt

Files

GOHbmcb08.pdf
Files (1.3 MB)
Name Size Download all
md5:dcee364cf910bda382d7db8dd0a8c2c6
110.1 kB Download
md5:f2fe999f7b3f2ead96cdf44c99abd601
1.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023