Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 21, 2008 | Published
Journal Article Open

Charge-transport-mediated recruitment of DNA repair enzymes

Abstract

Damaged or mismatched bases in DNA can be repaired by base excision repair enzymes (BER) that replace the defective base. Although the detailed molecular structures of many BER enzymes are known, how they colocalize to lesions remains unclear. One hypothesis involves charge transport (CT) along DNA [Yavin et al., Proc. Natl. Acad. Sci. U.S.A. 102, 3546 (2005)]. In this CT mechanism, electrons are released by recently adsorbed BER enzymes and travel along the DNA. The electrons can scatter (by heterogeneities along the DNA) back to the enzyme, destabilizing and knocking it off the DNA, or they can be absorbed by nearby lesions and guanine radicals. We develop a stochastic model to describe the electron dynamics and compute probabilities of electron capture by guanine radicals and repair enzymes. We also calculate first passage times of electron return and ensemble average these results over guanine radical distributions. Our statistical results provide the rules that enable us to perform implicit-electron Monte Carlo simulations of repair enzyme binding and redistribution near lesions. When lesions are electron absorbing, we show that the CT mechanism suppresses wasteful buildup of enzymes along intact portions of the DNA, maximizing enzyme concentration near lesions.

Additional Information

© 2008 American Institute of Physics. Received 15 July 2008; accepted 24 October 2008; published 15 December 2008. This work was supported by grants from the NSF (Grant No. DMS-0349195) and the NIH (Grant No. K25 AI41935). The authors thank J. Genereux, A.K. Boal, and J.K. Barton for helpful discussions.

Attached Files

Published - FOKjcp08.pdf

Files

FOKjcp08.pdf
Files (356.4 kB)
Name Size Download all
md5:369a62e30d92607141699ef76b6d6386
356.4 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023