Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1997 | public
Book Section - Chapter Open

Conditional weighted universal source codes: second order statistics in universal coding

Abstract

We consider the use of second order statistics in two-stage universal source coding. Examples of two-stage universal codes include the weighted universal vector quantization (WUVQ), weighted universal bit allocation (WUBA), and weighted universal transform coding (WUTC) algorithms. The second order statistics are incorporated in two-stage universal source codes in a manner analogous to the method by which second order statistics are incorporated in entropy constrained vector quantization (ECVQ) to yield conditional ECVQ (CECVQ). In this paper, we describe an optimal two-stage conditional entropy constrained universal source code along with its associated optimal design algorithm and a fast (but nonoptimal) variation of the original code. The design technique and coding algorithm here presented result in a new family of conditional entropy constrained universal codes including but not limited to the conditional entropy constrained WUVQ (CWUVQ), the conditional entropy constrained WUBA (CWUBA), and the conditional entropy constrained WUTC (CWUTC). The fast variation of the conditional entropy constrained universal codes allows the designer to trade off performance gains against storage and delay costs. We demonstrate the performance of the proposed codes on a collection of medical brain scans. On the given data set, the CWUVQ achieves up to 7.5 dB performance improvement over variable-rate WUVQ and up to 12 dB performance improvement over ECVQ. On the same data set, the fast variation of the CWUVQ achieves identical performance to that achieved by the original code at all but the lowest rates (less than 0.125 bits per pixel).

Additional Information

© Copyright 1997 IEEE. Reprinted with permission. This material is based upon work supported by NSF Grant No. MIP-9501977

Files

EFFicassp97a.pdf
Files (446.8 kB)
Name Size Download all
md5:c08cd9d5dd221e48178632a5e535e1a2
446.8 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023