Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 19, 2005 | public
Journal Article Open

Efficient Quantum Computation with Probabilistic Quantum Gates

Abstract

With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement.

Additional Information

©2005 The American Physical Society (Received 28 February 2005; published 17 August 2005) L. M. D. thanks Chris Monroe for helpful discussions. This work was supported by NSF grants (0431476 and EIA-0086038), the ARDA under ARO contracts, the A. P. Sloan Foundation, and the visitor program of MCTP. Note added.—Recently, we became aware that in the latest version of Ref. [8] the authors have also made some interesting improvement of their construction efficiency of the 1D cluster state to overcome the inefficient scaling.

Files

DUAprl05.pdf
Files (97.4 kB)
Name Size Download all
md5:3a5335fe6b45fe015fd6cc50343849ef
97.4 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 13, 2023