Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail
Abstract
Coexpression in Xenopus oocytes of the inwardly rectifying guanine nucleotide binding (G)-protein-gated K channel GIRK1 with a myristoylated modification of the (putative) cytosolic C-terminal tail [GIRK1 aa 183-501 fused in-frame to aa 1-15 of p60src and denoted src+ (183-501)] leads to a high degree of inhibition of the inward G-protein-gated K+ current. The nonmyristoylated segment, src- (183-501), is not active. Although some interference with assembly is not precluded, the evidence indicates that the main mechanism of inhibition is interference with functional activation of the channel by G proteins. In part, the tail functions as a blocking particle similar to a "Shaker ball"; it may also function by competing for the available supply of free G beta gamma liberated by hormone activation of a seven-helix receptor. The non-G-protein-gated weak inward rectifier ROMK1 is less effectively inhibited, and a Shaker K channel was not inhibited. Immunological assays show the presence of a high concentration of src+ (183-501) in the plasma membrane and the absence of any membrane forms for the nonmyristoylated segment.
Additional Information
© 1995 by the National Academy of Sciences. Contributed by Norman Davidson, April 7, 1995. We thank B. Henkle for oocyte preparations and Dr. T.A. Patterson for assistance in the affinity purification of the anti-GIRK1 antibodies. C.A.D. has been supported by an American Heart Association fellowship. S.B. is supported by a National Research Service Award training grant. Support by research grants from the National Institute of Mental Health, the National Institute of General Medical Sciences, the National Institute on Drug Abuse, the U.S.-Israel Binational Science Foundation, and the International Human Frontier Scientific Programme is also gratefully acknowledged. The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.Attached Files
Published - DASpnas95.pdf
Files
Name | Size | Download all |
---|---|---|
md5:f87d0f65528d022bb9ecf266156bbfbb
|
2.0 MB | Preview Download |
Additional details
- PMCID
- PMC41408
- Eprint ID
- 12188
- Resolver ID
- CaltechAUTHORS:DASpnas95
- American Heart Association
- National Research Service
- National Institute of Mental Health (NIMH)
- National Institute of General Medical Sciences
- National Institute on Drug Abuse
- Binational Science Foundation (USA-Israel)
- Human Frontier Science Program
- Created
-
2008-11-13Created from EPrint's datestamp field
- Updated
-
2021-11-08Created from EPrint's last_modified field