Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 15, 2001 | Published
Journal Article Open

Self-force on a scalar charge in the spacetime of a stationary, axisymmetric black hole

Abstract

We study the self-force acting on a particle endowed with scalar charge, which is held static (with respect to an undragged, static observer at infinity) outside a stationary, axially symmetric black hole. We find that the acceleration due to the self-force is in the same direction as the black hole's spin, and diverges when the particle approaches the outer boundary of the black hole's ergosphere. This acceleration diverges more rapidly approaching the ergosphere's boundary than the particle's acceleration in the absence of the self-force. At the leading order this self-force is a (post)2-Newtonian effect. For scalar charges with high charge-to-mass ratio, the acceleration due to the self-force starts dominating over the regular acceleration already far from the black hole. The self-force is proportional to the rate at which the black hole's rotational energy is dissipated. This self-force is local (i.e., only the Abraham-Lorentz-Dirac force and the local coupling to Ricci curvature contribute to it). The non-local, tail part of the self-force is zero.

Additional Information

© 2001 The American Physical Society. Received 2 March 2001; published 7 June 2001. We are indebted to Scott Hughes and Kip Thorne for invaluable discussions. L.M.B. thanks the Techion Institute of Theoretical Physics for hospitality. This research was supported by NSF grants AST-9731698 and PHY-9900776 and by NASA grant NAG5-6840.

Attached Files

Published - BURprd01a.pdf

Files

BURprd01a.pdf
Files (281.7 kB)
Name Size Download all
md5:1398c1c1ed70db9a31b1ac05cb66e93e
281.7 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 16, 2023