Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 1993 | Published
Journal Article Open

Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis

Abstract

We have developed a computer program that simulates the intracellular reactions mediating the rapid (nonadaptive) chemotactic response of Escherichia coli bacteria to the attractant aspartate and the repellent Ni2+ ions. The model is built from modular units representing the molecular components involved, which are each assigned a known value of intracellular concentration and enzymatic rate constant wherever possible. The components are linked into a network of coupled biochemical reactions based on a compilation of widely accepted mechanisms but incorporating several novel features. The computer motor shows the same pattern of runs, tumbles and pauses seen in actual bacteria and responds in the same way as living bacteria to sudden changes in concentration of aspartate or Ni2+. The simulated network accurately reproduces the phenotype of more than 30 mutants in which components of the chemotactic pathway are deleted and/or expressed in excess amounts and shows a rapidity of response to a step change in aspartate concentration similar to living bacteria. Discrepancies between the simulation and real bacteria in the phenotype of certain mutants and in the gain of the chemotactic response to aspartate suggest the existence of additional as yet unidentified interactions in the in vivo signal processing pathway.

Additional Information

© 1993 by The American Society for Cell Biology. Under the License and Publishing Agreement, authors grant to the general public, effective two months after publication of (i.e.,. the appearance of) the edited manuscript in an online issue of MBoC, the nonexclusive right to copy, distribute, or display the manuscript subject to the terms of the Creative Commons–Noncommercial–Share Alike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0). Submitted January 22, 1993; Accepted March 5, 1993. Thanks to H. Berg, J. Pine, and J. Bower for encouragement, A. Brown for help with programming, J. Gegner and F. Dahlquist for providing results in advance of publication, and L. Alex and R. Swanson for useful discussions and comments on the manuscript. This work was supported by a grant from the UK Medical Research Council to D.B. and National Institutes of Health Grant AI-19296 to M.I.S.

Attached Files

Published - BRAmbc93.pdf

Files

BRAmbc93.pdf
Files (2.6 MB)
Name Size Download all
md5:a7c80e11490454ed37d1579bd1c6f4b8
2.6 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023