Published June 2023 | Published
Journal Article Open

Non-local contribution from small scales in galaxy–galaxy lensing: comparison of mitigation schemes

Prat, J. ORCID icon
Zacharegkas, G. ORCID icon
Park, Y. ORCID icon
MacCrann, N. ORCID icon
Switzer, E. R.
Pandey, S.
Chang, C. ORCID icon
Blazek, J.
Miquel, R. ORCID icon
Alarcon, A. ORCID icon
Alves, O.
Amon, A. ORCID icon
Andrade-Oliveira, F.
Bechtol, K. ORCID icon
Becker, M. R.
Bernstein, G. M. ORCID icon
Chen, R.
Choi, A. ORCID icon
Camacho, H.
Campos, A.
Carnero Rosell, A. ORCID icon
Carrasco Kind, M.
Cawthon, R. ORCID icon
Cordero, J.
Crocce, M. ORCID icon
Davis, C.
DeRose, J. ORCID icon
Diehl, H. T. ORCID icon
Dodelson, S.
Doux, C. ORCID icon
Drlica-Wagner, A.
Eckert, K.
Eifler, T. F. ORCID icon
Elvin-Poole, J.
Everett, S.
Fang, X.
Ferté, A. ORCID icon
Fosalba, P. ORCID icon
Friedrich, O.
Gatti, M. ORCID icon
Giannini, G.
Gruen, D.
Gruendl, R. A. ORCID icon
Harrison, I.
Hartley, W. G.
Herner, K.
Huang, H.
Huff, E. M. ORCID icon
Jarvis, M.
Krause, E.
Kuropatkin, N. ORCID icon
Leget, P.-F.
McCullough, J.
Myles, J.
Navarro-Alsina, A.
Porredon, A. ORCID icon
Raveri, M.
Rollins, R. P.
Roodman, A. ORCID icon
Rosenfeld, R.
Ross, A. J.
Rykoff, E. S. ORCID icon
Sánchez, C.
Sanchez, J.
Secco, L. F.
Sevilla-Noarbe, I. ORCID icon
Sheldon, E. ORCID icon
Shin, T.
Troxel, M. A. ORCID icon
Tutusaus, I. ORCID icon
Varga, T. N.
Yanny, B.
Yin, B.
Zhang, Y.
Zuntz, J.
Aguena, M. ORCID icon
Allam, S. ORCID icon
Annis, J. ORCID icon
Bacon, D.
Bertin, E. ORCID icon
Bocquet, S. ORCID icon
Brooks, D.
Burke, D. L.
Carretero, J. ORCID icon
Costanzi, M. ORCID icon
Pereira, M. E. S.
De Vicente, J.
Desai, S.
Ferrero, I. ORCID icon
Flaugher, B. ORCID icon
Gerdes, D. W. ORCID icon
Gutierrez, G.
Hinton, S. R. ORCID icon
Hollowood, D. L. ORCID icon
Honscheid, K. ORCID icon
James, D. J. ORCID icon
Lima, M.
Menanteau, F. ORCID icon
Mena-Fernández, J.
Palmese, A. ORCID icon
Paterno, M.
Paz-Chinchón, F. ORCID icon
Pieres, A. ORCID icon
Plazas Malagón, A. A. ORCID icon
Rodriguez-Monroy, M. ORCID icon
Sanchez, E.
Schubnell, M. ORCID icon
Smith, M.
Soares-Santos, M. ORCID icon
Suchyta, E. ORCID icon
Swanson, M. E. C. ORCID icon
Tarle, G. ORCID icon
To, C. ORCID icon
Weaverdyck, N. ORCID icon
Weller, J. ORCID icon
DES Collaboration
An error occurred while generating the citation.

Abstract

Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model non-linearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the non-locality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Y-transformation, the point-mass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like set-up and also when applied to DES Y3 data. With the LSST Y1 set-up, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results than applying larger scale cuts without using any mitigation scheme.

Additional Information

© 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l'Espai (IEEC/CSIC), the Institut de Física d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF's NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF's NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588,SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Data Availability: The data underlying this article are available in the DES Y3 Cosmology Data Release page at https://des.ncsa.illinois.edu/releases/y3a2/Y3key-products. The code developed for this project is integrated within the cosmosis framework and can be shared upon request.

Attached Files

Published - stad847.pdf

Files

stad847.pdf
Files (5.3 MB)
Name Size Download all
md5:26ec58593fab76323e642089ff7e5ac7
5.3 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023