Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 8, 1978 | public
Journal Article

Mechanisms of gas-phase and liquid-phase ozonolysis

Abstract

Generalized valence bond (GVB) and configuration interaction (Cl) calculations using an extensive basis [double f plus polarization functions (DZd)] have been carried out on peroxymethylene (H₂COO, often referred to as carbonyl oxide or as the Criegee intermediate), dioxirane, and dioxymethylene (OCH₂O). The ab initio thermochemical results are combined with existing thermochemical data to analyze possible modes of ozonolysis. The predicted heat of formation of peroxymethylene is 29.1 kcal, indicating that the dissociation of the primary ozonide to form peroxymethylene biradical and formaldehyde is 9 kcal endothermic. The ring state, dioxirane, is predicted to be 36 kcal below peroxymethylene with dioxymethylene lying 15 kcal above the ring state. Gas-phase experimental results are shown to be consistent with the predicted thermochemistry. In addition, solution-phase results on the stereospecificity of ozonolysis are shown to be consistent with a biradical intermediate.

Additional Information

© 1978 American Chemical Society. This work was supported in part by a grant (CHE73-05132) from the National Science Foundation and by a grant (GM-23971) from the National Institute of General Medical Sciences. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023