Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 8, 2023 | Published
Journal Article Open

The spatial distribution of soluble organic matter and their relationship to minerals in the asteroid (162173) Ryugu

Abstract

We performed in-situ analysis on a ~ 1 mm-sized grain A0080 returned by the Hayabusa2 spacecraft from near-Earth asteroid (162173) Ryugu to investigate the relationship of soluble organic matter (SOM) to minerals. Desorption electrospray ionization-high resolution mass spectrometry (DESI-HRMS) imaging mapped more than 200 CHN, CHO, CHO–Na (sodium adducted), and CHNO soluble organic compounds. A heterogeneous spatial distribution was observed for different compound classes of SOM as well as among alkylated homologues on the sample surface. The A0080 sample showed mineralogy more like an Ivuna-type (CI) carbonaceous chondrite than other meteorites. It contained two different lithologies, which are either rich (lithology 1) or poor (lithology 2) in magnetite, pyrrhotite, and dolomite. CHN compounds were more concentrated in lithology 1 than in lithology 2; on the other hand, CHO, CHO–Na, and CHNO compounds were distributed in both lithologies. Such different spatial distribution of SOM is likely the result of interaction of the SOM with minerals, during precipitation of the SOM via fluid activity, or could be due to difference in transportation efficiencies of SOMs in aqueous fluid. Organic-related ions measured by time-of-flight secondary ion mass spectrometry (ToF–SIMS) did not coincide with the spatial distribution revealed by DESI-HRMS imaging. This result may be because the different ionization mechanism between DESI and SIMS, or indicate that the ToF–SIMS data would be mainly derived from methanol-insoluble organic matter in A0080. In the Orgueil meteorite, such relationship between altered minerals and SOM distributions was not observed by DESI-HRMS analysis and field-emission scanning electron microscopy, which would result from differences of SOM formation processes and sequent alteration process on the parent bodies or even on the Earth. Alkylated homologues of CHN compounds were identified in A0080 by DESI-HRMS imaging as observed in the Murchison meteorite, but not from the Orgueil meteorite. These compounds with a large C number were enriched in Murchison fragments with abundant carbonate grains. In contrast, such relationship was not observed in A0080, implying different formation or growth mechanisms for the alkylated CHN compounds by interaction with fluid and minerals on the Murchison parent body and asteroid Ryugu.

Additional Information

© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Hayabusa2 project has been led by JAXA (Japan Aerospace Exploration Agency) in collaboration with DLR (German Space Center) and CNES (French Space Center) and supported by NASA and ASA (Australian Space Agency). We are grateful to all the members of the Hayabusa2 project for their technical and scientific contributions. We sincerely thank Dr. Conel M.O'.D. Alexander, an anonymous reviewer, and the editors of EPS for their constructive comments. The research is partly supported by JSPS KAKENHI Grant Numbers JP21K03641 for MH, JP20H00202 and JP20H05846 for HN, and JP18H03959 for DA and KF; and NASA Consortium for Hayabusa2 Analysis of Organic Solubles for JPD, JCA, JEE, DPG, HVG, HLM, and ETP. The authors declare that they have no competing interests.

Attached Files

Published - s40623-023-01792-w.pdf

Files

s40623-023-01792-w.pdf
Files (13.8 MB)
Name Size Download all
md5:f4dd6745e07e9159ece0839b2152e400
13.8 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023