Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2019 | Published
Journal Article Open

Constrained transport and adaptive mesh refinement in the Black Hole Accretion Code

Abstract

Context. Worldwide very long baseline radio interferometry (VLBI) arrays are expected to obtain horizon-scale images of supermassive black hole candidates and of relativistic jets in several nearby active galactic nuclei. This, together with the expected detection of electromagnetic counterparts of gravitational-wave signals, motivates the development of models for magnetohydrodynamic flows in strong gravitational fields. Aims. The Black Hole Accretion Code (BHAC) is a publicliy available code intended to aid with the modeling of such sources by performing general relativistic magnetohydrodynamical simulations in arbitrary stationary spacetimes. New additions to the code are required in order to guarantee an accurate evolution of the magnetic field when small and large scales are captured simultaneously. Methods. We discuss the adaptive mesh refinement (AMR) techniques employed in BHAC, which are essential to keep several problems computationally tractable, as well as staggered-mesh-based constrained transport (CT) algorithms to preserve the divergence-free constraint of the magnetic field. We also present a general class of prolongation operators for face-allocated variables compatible with them. Results. After presenting several standard tests for the new implementation, we show that the choice of the divergence-control method can produce qualitative differences in the simulation results for scientifically relevant accretion problems. We demonstrate the ability of AMR to decrease the computational costs of black hole accretion simulations while sufficiently resolving turbulence arising from the magnetorotational instability. In particular, we describe a simulation of an accreting Kerr black hole in Cartesian coordinates using AMR to follow the propagation of a relativistic jet while self-consistently including the jet engine, a problem set up for which the new AMR implementation is particularly advantageous. Conclusions. The CT methods and AMR strategies discussed here are currently being used in the simulations performed with BHAC for the generation of theoretical models for the Event Horizon Telescope collaboration.

Additional Information

© ESO 2019. We would like to thank Alejandro Cruz Osorio, Lukas Weih, David Kling, Jonas Köhler, and Mariafelicia de Laurentis for useful discussions. This research is supported by the ERC synergy grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" (Grant No. 610058), the "NewCompStar" COST Action MP1304, the LOEWE-Program in HIC for FAIR, and the European Union's Horizon 2020 Research and Innovation Programme (Grant 671698, call FETHPC-1-2014, project ExaHyPE). During the completion of this work, HO was supported in part by a CONACYT-DAAD scholarship. The simulations were performed in part on the SuperMUC cluster at the LRZ in Garching, the LOEWE cluster at the CSC in Frankfurt, the Iboga cluster at the ITP Frankfurt, the HazelHen cluster at the HLRS in Stuttgart, as well as on the Dutch National Supercomputing cluster Cartesius, funded by the NWO computing grant 164. We acknowledge technical support from Thomas Coelho.

Attached Files

Published - aa35559-19.pdf

Files

aa35559-19.pdf
Files (3.9 MB)
Name Size Download all
md5:7105aa9fd448638f015ebf7c7d488bd3
3.9 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023