Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 5, 2001 | public
Journal Article

Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction

Abstract

Response data from an array of conducting polymer composite vapor detectors that form an electronic nose were collected for the purpose of comparing selected, quantitatively measurable, phenomena in odor detection and classification to the olfactory characteristics of monkeys and humans. Odor detection thresholds and discriminability between structurally similar pairs of odorants were the two primary quantities evaluated for this comparison. Comparisons were only made for volatile organic vapors as opposed to aroma active odorant vapors. Electronic nose detection thresholds for a homologous series of n-alkane and 1-alcohol odorants were determined and the results were compared to literature values for the mean olfactory detection thresholds observed in psychophysical experiments on humans exposed to these same vapors. The trends in odor detection thresholds of the electronic nose towards the tested analytes were very similar to those exhibited by humans. The discrimination performance of the electronic nose for distinguishing between pairs of odorants within incrementally varying series of esters, carboxylic acids and alcohols were also compared to the published data of Laska and co-workers on the psychophysical performance of humans and monkeys for these same odorant pairs. Similar trends were generally observed between the humans, monkeys, and the electronic nose in that discrimination performance increased as the compounds of an odorant pair became more structurally dissimilar. With use of the Fisher linear discriminant algorithm for classification of these test pairs of odorants, the electronic nose exhibited significantly better discriminability than humans or monkeys for the odorant pairs evaluated in this work under the test conditions for which the discriminability was evaluated.

Additional Information

We sincerely thank Dr. Matthias Laska and his co-workers from the Department of Medical Psychology at the University of Munich Medical School for providing us with their data on the odorant discriminating ability of humans and monkeys. We thank NASA, the Army Research Office and DARPA for their support of this work, with primary support under a MURI grant from the Army Research Office. B.J.D. acknowledges the Government of Canada for an NSERC 1967 Centennial Graduate Fellowship.

Additional details

Created:
August 21, 2023
Modified:
October 23, 2023