Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2023 | Published
Journal Article Open

A Distance Measurement to M33 Using Optical Photometry of Mira Variables

Abstract

We present a systematic analysis to determine and improve the pulsation periods of 1637 known long-period Mira variables in M33 using gri-band light curves spanning ∼18 yr from several surveys, including the M33 variability survey, Panoramic Survey Telescope and Rapid Response System, Palomar Transient Factory (PTF), intermediate PTF, and Zwicky Transient Facility. Based on these collections of light curves, we found that optical-band light curves that are as complete as possible are crucial to determine the periods of distant Miras. We demonstrated that the machine-learning techniques can be used to classify Miras into O-rich and C-rich based on the (J − Kₛ) period–color plane. Finally, We derived the distance modulus to M33 using O-rich Miras at maximum light together with our improved periods as 24.67 ± 0.06 mag, which is in good agreement with the recommended value given in the literature.

Additional Information

© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. We thank an anonymous referee for the suggestions to improve the manuscript. We are thankful for funding from the Ministry of Science and Technology (MoST, Taiwan) under the contract 107-2119-M-008-014-MY2, 107-2119-M-008-012, 108-2628-M-007-005-RSP, and 109-2112-M-008-014-MY3. A.B. acknowledges funding from the European Unions Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No. 886298. Based on observations obtained with the 48-inch Samuel Oschin Telescope at the Palomar Observatory as part of the Zwicky Transient Facility project. ZTF is supported by the National Science Foundation under grants No. AST-1440341 and AST-2034437 and a collaboration including current partners Caltech, IPAC, the Weizmann Institute of Science, the Oskar Klein Center at Stockholm University, the University of Maryland, Deutsches Elektronen-Synchrotron and Humboldt University, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, Trinity College Dublin, Lawrence Livermore National Laboratories, IN2P3, University of Warwick, Ruhr University Bochum, Northwestern University and former partners the University of Washington, Los Alamos National Laboratories, and Lawrence Berkeley National Laboratories. Operations are conducted by COO, IPAC, and UW. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. Software: astropy (Astropy Collaboration et al. 2013, 2018), gatspy (VanderPlas & Ivezić 2015).

Attached Files

Published - Ou_2023_AJ_165_137.pdf

Files

Ou_2023_AJ_165_137.pdf
Files (1.5 MB)
Name Size Download all
md5:82000bac26d3ad569825a3835ccfc838
1.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023