Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2001 | public
Journal Article

Hygroscopic Properties of Pasadena, California Aerosol

Abstract

The hygroscopic behavior of Pasadena, CA aerosol was continuously measured from August 15 to September 15, 1999 using a tandem differential mobility analyzer. Two dry particle sizes were sampled, 50 nm and 150 nm in diameter; humidification of the dry aerosol was carried out at 89% relative humidity. Complex growth patterns were observed for both size modes, with aerosol distributions splitting from a single mode at times to more than 6 modes. Diurnal profiles for the observed multiple peaks were noted, with the greatest number of measurable growth modes being found during the late night and predawn hours for 50 mn particles. For 150 nm particles, more modes were present during the afternoon hours, with the humidified aerosol becoming bimodal during the late night/early morning hours. Growth factors, defined as the ratio of humidified particle diameter (at 89%) to dry diameter, were determined for modes with significant number concentrations. Average growth factors over the sampling period for the 2 particle sizes ranged from 1.0 to 1.6. Hygroscopic growth increased in the latter half of the sampling period when forest fires were present. In short, treating this complex urban aerosol as a combination of "less" and "more" hygroscopic fractions is an oversimplification.

Additional Information

This work was supported by the U.S. Environmental Protection Agency Center on Airborne Organics. Special thanks to Kathalena Cocker and Markus Kalberer for assistance with the experiments and the processing of the data.

Additional details

Created:
August 21, 2023
Modified:
October 25, 2023