Structure and stability of the compressible Stuart vortex
- Creators
- O'Reilly, G.
-
Pullin, D. I.
Abstract
The structure and two- and three-dimensional stability properties of a linear array of compressible Stuart vortices (CSV; Stuart 1967; Meiron et al. 2000) are investigated both analytically and numerically. The CSV is a family of steady, homentropic, two-dimensional solutions to the compressible Euler equations, parameterized by the free-stream Mach number M_∞, and the mass flux _ inside a single vortex core. Known solutions have 0 < M_∞ < 1. To investigate the normal-mode stability of the generally spatially non-uniform CSV solutions, the linear partial-differential equations describing the time evolution of small perturbations to the CSV base state are solved numerically using a normal-mode analysis in conjunction with a spectral method. The effect of increasing M_∞ on the two main classes of instabilities found by Pierrehumbert & Widnall (1982) for the incompressible limit M_∞ → 0 is studied. It is found that both two- and three-dimensional subharmonic instabilities cease to promote pairing events even at moderate M_∞. The fundamental mode becomes dominant at higher Mach numbers, although it ceases to peak strongly at a single spanwise wavenumber. We also find, over the range of ε investigated, a new instability corresponding to an instability on a parallel shear layer. The significance of these instabilities to experimental observations of growth in the compressible mixing layer is discussed. In an Appendix, we study the CSV equations when ε is small and M_∞ is finite using a perturbation expansion in powers of ε. An eigenvalue determining the structure of the perturbed vorticity and density fields is obtained from a singular Sturm–Liouville problem for the stream-function perturbation at O(ε). The resulting small-amplitude steady CSV solutions are shown to represent a bifurcation from the neutral point in the stability of a parallel shear layer with a tanh-velocity profile in a compressible inviscid perfect gas at uniform temperature.
Additional Information
This work was supported by the Academic Strategic Alliances Program of the Accelerated Strategic Computing Initiative (ASCI/ASAP) under subcontract no. B341492 of DOE contract W-7405-ENG-48.Attached Files
Accepted Version - cit-asci-tr166.pdf
Files
Name | Size | Download all |
---|---|---|
md5:75db8bef7340668131703882ad5823bf
|
1.4 MB | Preview Download |
Additional details
- Eprint ID
- 119222
- Resolver ID
- CaltechAUTHORS:20230210-513731000.1
- Department of Energy (DOE)
- B341492
- Department of Energy (DOE)
- W-7405-ENG-48
- Created
-
2023-02-11Created from EPrint's datestamp field
- Updated
-
2023-02-11Created from EPrint's last_modified field
- Caltech groups
- Accelerated Strategic Computing Initiative, GALCIT
- Series Name
- ASCI Technical Report
- Series Volume or Issue Number
- ASCI-TR166