Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 30, 2022 | public
Journal Article

Promotion of superconductivity in magic-angle graphene multilayers

Abstract

Graphene moiré superlattices show an abundance of correlated insulating, topological, and superconducting phases. Whereas the origins of strong correlations and nontrivial topology can be directly linked to flat bands, the nature of superconductivity remains enigmatic. We demonstrate that magic-angle devices made of twisted tri-, quadri-, and pentalayer graphene placed on monolayer tungsten diselenide exhibit flavor polarization and superconductivity. We also observe insulating states in the tril- and quadrilayer arising at finite electric displacement fields. As the number of layers increases, superconductivity emerges over an enhanced filling-factor range, and in the pentalayer it extends well beyond the filling of four electrons per moiré unit cell. Our results highlight the role of the interplay between flat and more dispersive bands in extending superconducting regions in graphene moiré superlattices.

Additional Information

This work has been primarily supported by NSF-CAREER award (DMR-1753306), Office of Naval Research (grant N142112635), and Army Research Office under Grant Award W911NF17-1-0323. Nanofabrication efforts have been in part supported by Department of Energy DOE-QIS program (DE-SC0019166). S.N-P. acknowledges support from the Sloan Foundation (grant FG-2020-13716). G.R., J.A., and S.N.-P. also acknowledge support of the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation through Grant GBMF1250. C.L. acknowledges support from the Gordon and Betty Moore Foundation's EPiQS Initiative, grant GBMF8682. Y.P. acknowledges support from the startup fund from California State University, Northridge. F.v.O. is supported by Deutsche Forschungsgemeinschaft within CRC 183 (project C02) as well as the project TWISTGRAPH.

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023