Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2022 | public
Journal Article

Dendoraite-(NH₄), a new phosphate-oxalate mineral related to thebaite-(NH₄) from the Rowley mine, Arizona, USA

Abstract

Dendoraite-(NH4), (NH4)2NaAl(C2O4)(PO3OH)2(H2O)2, is a new mineral species from the Rowley mine, Maricopa County, Arizona, USA. It occurs in an unusual bat-guano-related, post-mining assemblage of phases that include a variety of vanadates, phosphates, oxalates and chlorides, some containing NH4+. Other secondary minerals found in association with dendoraite-(NH4) are antipinite, fluorite, mimetite, mottramite, relianceite-(K), rowleyite, salammoniac, struvite, vanadinite, willemite, wulfenite and at least one other new mineral. Crystals of dendoraite-(NH4) are colourless blades up to ~0.1 mm in length. The streak is white and lustre is vitreous, Mohs hardness is 2½, tenacity is brittle and fracture is splintery. The calculated density is 2.122 g⋅cm–3. Dendoraite-(NH4) is optically biaxial (–) with α = 1.490(5), β = 1.540(5) and γ = 1.541(5) (white light); 2Vcalc = 15.7°; and orientation X = b. Electron microprobe analysis gave the empirical formula [(NH4)1.48K0.52]Σ2.00Na0.96(Al0.96Fe3+0.03)Σ0.99(C2O4)[PO2.97(OH)1.03]2(H2O)2, with the C, N and H contents constrained by the crystal structure. Dendoraite-(NH4) is monoclinic, P21/n, with a = 10.695(6), b = 6.285(4), c = 19.227(12) Å, β = 90.933(10)°, V = 1292(2) Å3, and Z = 4. The structural unit in the crystal structure of dendoraite-(NH4) (R1 = 0.0467 for 1322 Io > 2σI reflections) is a double-strand chain of corner-sharing AlO6 octahedra and PO3OH tetrahedra decorated by additional PO3OH tetrahedra and C2O4 groups. Topologically, this is the same chain found in the structure of thebaite-(NH4). The decorated chains connect to one another through links to NaO7(H2O) polyhedra to form a [Na(H2O)Al(C2O4)(PO3OH)2]2– sheet, which connect to one another through bonds to (NH4)/K and through hydrogen bonds.

Additional Information

Anonymous reviewers and Pete Leverett are thanked for constructive comments, which improved the manuscript. Keith Wentz, claim holder of the Rowley mine, is thanked for allowing underground access for the study of the occurrence and the collecting of specimens, along with Frank Hawthorne for providing access to the single-crystal instrument at the University of Manitoba. This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County.

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023