Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 11, 2022 | Submitted
Report Open

Reducing the LQG Cost with Minimal Communication

Abstract

We study the linear quadratic Gaussian (LQG) control problem, in which the controller's observation of the system state is such that a desired cost is unattainable. To achieve the desired LQG cost, we introduce a communication link from the observer (encoder) to the controller. We investigate the optimal trade-off between the improved LQG cost and the consumed communication (information) resources, measured with the conditional directed information, across all encoding-decoding policies. The main result is a semidefinite programming formulation for that optimization problem in the finite-horizon scenario, which applies to time-varying linear dynamical systems. This result extends a seminal work by Tanaka et al., where the only information the controller knows about the system state arrives via a communication channel, to the scenario where the controller has also access to a noisy observation of the system state. As part of our derivation to show the optimiality of an encoder that transmits a memoryless Gaussian measurement of the state, we show that the presence of the controller's observations at the encoder can not reduce the minimal directed information. For time-invariant systems, where the optimal policy may be time-varying, we show in the infinite-horizon scenario that the optimal policy is time-invariant and can be computed explicitly from a solution of a finite-dimensional semidefinite programming. The results are demonstrated via examples that show that even low-quality measurements can have a significant impact on the required communication resources.

Additional Information

Attribution 4.0 International (CC BY 4.0)

Attached Files

Submitted - 2109.12246.pdf

Files

2109.12246.pdf
Files (295.2 kB)
Name Size Download all
md5:a0546bbcad8e8ddbf35275f517e5cbcc
295.2 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
March 5, 2024