Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2022 | Published + Submitted
Journal Article Open

The First High-contrast Images of X-Ray Binaries: Detection of Candidate Companions in the γ Cas Analog RX J1744.7-2713

Abstract

X-ray binaries provide exceptional laboratories for understanding the physics of matter under the most extreme conditions. Until recently, there were few, if any, observational constraints on the circumbinary environments of X-ray binaries at ∼100–5000 au scales. It remains unclear how the accretion onto the compact objects or the explosions giving rise to the compact objects interact with their immediate surroundings. Here, we present the first high-contrast adaptive optics images of X-ray binaries. These observations target all X-ray binaries within ∼3 kpc accessible with the Keck/NIRC2 vortex coronagraph. This paper focuses on one of the first key results from this campaign; our images reveal the presence of 21 sources potentially associated with the γ Cassiopeiae analog high-mass X-ray binary RX J1744.7−2713. By conducting different analyses—a preliminary proper motion analysis, a color–magnitude diagram, and a probability of chance alignment calculation—we found that three of these 21 sources have a high probability of being bound to the system. If confirmed, they would be in wide orbits (∼450 to 2500 au). While follow-up astrometric observations will be needed in ∼5–10 yr to confirm further the bound nature of these detections, these discoveries emphasize that such observations may provide a major breakthrough in the field. In fact, they would be useful not only for our understanding of stellar multiplicity, but also for our understanding of how planets, brown dwarfs, and stars can form even in the most extreme environments.

Additional Information

© 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Received 2021 June 19; revised 2022 April 21; accepted 2022 May 4; published 2022 June 13. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. We also want to thank V. Christiaens for the help with VIP. M.P.E. is supported by the Institute for Data Valorisation (IVADO) through the M. Sc. Excellence Scholarship, by the Department of Physics of the Université de Montréal and by the Institute for Research on Exoplanets (iREx). J.H.L. is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Canada Research Chair programs and wishes to acknowledge the support of an NSERC Discovery Grant and the NSERC accelerator grant. J.R. acknowledges support by the French National Research Agency in the framework of the Investissements d'Avenir program (ANR-15-IDEX-02), through the funding of the "Origin of Life" project of the Univ. Grenoble-Alpes. D.J.W. acknowledges financial support from STFC in the form of an Ernest Rutherford fellowship.

Attached Files

Published - Prasow-Emond_2022_AJ_164_7.pdf

Submitted - 2205-05096.pdf

Files

2205-05096.pdf
Files (5.3 MB)
Name Size Download all
md5:84ebf5aa859bfc5e84f0fdd8ce54664d
3.8 MB Preview Download
md5:d179d7a3d50a2ce5cac4345b203c3c71
1.5 MB Preview Download

Additional details

Created:
October 9, 2023
Modified:
October 24, 2023