Euclid preparation: XIX. Impact of magnification on photometric galaxy clustering
- Creators
- Lepori, F.
-
Tutusaus, I.
- Viglione, C.
- Bonvin, C.
-
Camera, S.
-
Castander, F. J.
- Durrer, R.
-
Fosalba, P.
- Jelic-Cizmek, G.
-
Kunz, M.
- Adamek, J.
- Casas, S.
- Martinelli, M.
- Sakr, Z.
-
Sapone, D.
- Amara, A.
-
Auricchio, N.
- Bodendorf, C.
-
Bonino, D.
-
Branchini, E.
-
Brescia, M.
-
Brinchmann, J.
-
Capobianco, V.
- Carbone, C.
-
Carretero, J.
-
Castellano, M.
-
Cavuoti, S.
-
Cimatti, A.
-
Cledassou, R.
-
Congedo, G.
-
Conselice, C. J.
-
Conversi, L.
-
Copin, Y.
-
Corcione, L.
- Courbin, F.
- Da Silva, A.
- Degaudenzi, H.
- Douspis, M.
- Dubath, F.
- Dupac, X.
-
Dusini, S.
- Ealet, A.
-
Farrens, S.
- Ferriol, S.
-
Franceschi, E.
- Fumana, M.
-
Garilli, B.
-
Gillard, W.
-
Gillis, B.
-
Giocoli, C.
- Grazian, A.
- Grupp, F.
- Guzzo, L.
- Haugan, S. V. H.
- Holmes, W.
- Hormuth, F.
- Hudelot, P.
-
Jahnke, K.
-
Kermiche, S.
- Kiessling, A.
-
Kilbinger, M.
-
Kitching, T.
- Kümmel, M.
-
Kurki-Suonio, H.
-
Ligori, S.
- Lilje, P. B.
-
Lloro, I.
-
Mansutti, O.
-
Marggraf, O.
- Markovic, K.
-
Marulli, F.
-
Massey, R.
- Maurogordato, S.
- Melchior, M.
-
Meneghetti, M.
-
Merlin, E.
- Meylan, G.
-
Moresco, M.
-
Moscardini, L.
- Munari, E.
- Nakajima, R.
- Niemi, S. M.
-
Padilla, C.
-
Paltani, S.
- Pasian, F.
- Pedersen, K.
-
Percival, W. J.
-
Pettorino, V.
-
Pires, S.
- Poncet, M.
- Popa, L.
-
Pozzetti, L.
- Raison, F.
-
Rhodes, J.
-
Roncarelli, M.
- Rossetti, E.
-
Saglia, R.
-
Schneider, P.
-
Secroun, A.
- Seidel, G.
-
Serrano, S.
- Sirignano, C.
- Sirri, G.
- Stanco, L.
- Starck, J.-L.
- Tallada-Crespí, P.
- Taylor, A. N.
-
Tereno, I.
-
Toledo-Moreo, R.
- Torradeflot, F.
-
Valentijn, E. A.
-
Valenziano, L.
-
Wang, Y.
-
Weller, J.
-
Zamorani, G.
- Zoubian, J.
-
Andreon, S.
-
Bardelli, S.
-
Fabbiano, G.
-
Graciá-Carpio, J.
-
Maino, D.
-
Medinaceli, E.
-
Mei, S.
- Renzi, A.
-
Romelli, E.
- Sureau, F.
- Vassallo, T.
-
Zacchei, A.
-
Zucca, E.
-
Baccigalupi, C.
-
Balaguera-Antolínez, A.
- Bernardeau, F.
-
Biviano, A.
- Blanchard, A.
- Bolzonella, M.
- Borgani, S.
-
Bozzo, E.
-
Burigana, C.
-
Cabanac, R.
-
Cappi, A.
- Carvalho, C. S.
-
Castignani, G.
- Colodro-Conde, C.
- Coupon, J.
-
Courtois, H. M.
-
Cuby, J.-G.
- Davini, S.
-
de la Torre, S.
- Di Ferdinando, D.
- Farina, M.
- Ferreira, P. G.
-
Finelli, F.
-
Galeotta, S.
- Ganga, K.
-
García-Bellido, J.
-
Gaztanaga, E.
-
Gozaliasl, G.
-
Hook, I. M.
- Ilić, S.
- Joachimi, B.
- Kansal, V.
-
Keihanen, E.
- Kirkpatrick, C. C.
- Lindholm, V.
- Mainetti, G.
- Maoli, R.
-
Martinet, N.
- Maturi, M.
- Metcalf, R. B.
- Monaco, P.
- Morgante, G.
-
Nightingale, J.
-
Nucita, A.
-
Patrizii, L.
- Popa, V.
- Potter, D.
-
Riccio, G.
-
Sánchez, A. G.
-
Schirmer, M.
-
Schultheis, M.
- Scottez, V.
- Sefusatti, E.
-
Tramacere, A.
-
Valiviita, J.
-
Viel, M.
- Hildebrandt, H.
- Euclid Collaboration
Abstract
Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected. Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation. Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1σ errors on Ωₘ,₀, w₀, wₐ at the level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy–galaxy lensing, magnification does not improve precision, but it leads to an up to 6σ bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 × 2pt analysis) for an accurate parameter estimation.
Additional Information
© ESO 2022. Received: 12 October 2021 Accepted: 24 January 2022. C.B., R.D., G.J., M.K., J.A. and F.L. acknowledge support from the Swiss National Science Foundation. C.B. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863929; project title "Testing the law of gravity with novel large-scale structure observables"). I.T. acknowledges support from the Spanish Ministry of Science, Innovation and Universities through grant ESP2017-89838, and the H2020 programme of the European Commission through grant 776247. S.C. acknowledges support from the 'Departments of Excellence 2018-2022' Grant (L. 232/2016) awarded by the Italian Ministry of University and Research (MUR). The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d'Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org).Attached Files
Published - aa42419-21.pdf
Accepted Version - 2110.05435.pdf
Files
Name | Size | Download all |
---|---|---|
md5:ff15f72f5c30aa9b5ef5493fad6045fd
|
1.4 MB | Preview Download |
md5:9919cb018a4c3caed8100bee88dccaa1
|
1.2 MB | Preview Download |
Additional details
- Eprint ID
- 115735
- Resolver ID
- CaltechAUTHORS:20220721-8407000
- Swiss National Science Foundation (SNSF)
- European Research Council (ERC)
- 863929
- Ministerio de Ciencia, Innovación y Universidades (MICIU)
- ESP2017-89838
- European Research Council (ERC)
- 776247
- Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR)
- L. 232/2016
- European Space Agency (ESA)
- Academy of Finland
- Agenzia Spaziale Italiana (ASI)
- Belgian Federal Science Policy Office (BELSPO)
- Canadian Euclid Consortium
- Centre National d'Études Spatiales (CNES)
- Deutsches Zentrum für Luft- und Raumfahrt (DLR)
- Danish Space Research Institute
- Fundação para a Ciência e a Tecnologia (FCT)
- Ministerio de Economia y Competitividad (MINECO)
- NASA
- National Astronomical Observatory of Japan
- Nederlandse Onderzoekschool voor de Astronomie (NOVA)
- Norwegian Research Council
- Romanian Space Agency
- Swiss Space Office (SSO)
- United Kingdom Space Agency (UKSA)
- Created
-
2022-07-22Created from EPrint's datestamp field
- Updated
-
2022-07-22Created from EPrint's last_modified field
- Caltech groups
- Infrared Processing and Analysis Center (IPAC)