MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge
Abstract
Autonomous agents have made great strides in specialist domains like Atari games and Go. However, they typically learn tabula rasa in isolated environments with limited and manually conceived objectives, thus failing to generalize across a wide spectrum of tasks and capabilities. Inspired by how humans continually learn and adapt in the open world, we advocate a trinity of ingredients for building generalist agents: 1) an environment that supports a multitude of tasks and goals, 2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable agent architecture. We introduce MineDojo, a new framework built on the popular Minecraft game that features a simulation suite with thousands of diverse open-ended tasks and an internet-scale knowledge base with Minecraft videos, tutorials, wiki pages, and forum discussions. Using MineDojo's data, we propose a novel agent learning algorithm that leverages large pre-trained video-language models as a learned reward function. Our agent is able to solve a variety of open-ended tasks specified in free-form language without any manually designed dense shaping reward. We open-source the simulation suite and knowledge bases (this https URL: https://minedojo.org/) to promote research towards the goal of generally capable embodied agents.
Additional Information
Attribution 4.0 International (CC BY 4.0) We are extremely grateful to Dieter Fox, Bryan Catanzaro, Shikun Liu, Zhiding Yu, Chaowei Xiao, Weili Nie, Jean Kossaifi, Jonathan Raiman, Jaakko Haapasalo, John Spitzer, Zhiyuan "Jerry" Lin, Yingqi Zheng, and many other colleagues and friends for their helpful feedback and insightful discussions. NVIDIA provides the necessary computing resource and infrastructure for this project. Guanzhi Wang is supported by the Kortschak fellowship in Computing and Mathematical Sciences at Caltech.Attached Files
Submitted - 2206.08853.pdf
Files
Name | Size | Download all |
---|---|---|
md5:28b10881d4969ef1ed7ae6010f0847ab
|
8.0 MB | Preview Download |
Additional details
- Eprint ID
- 115575
- Resolver ID
- CaltechAUTHORS:20220714-212441682
- Kortschak Scholars Program
- Created
-
2022-07-15Created from EPrint's datestamp field
- Updated
-
2023-06-02Created from EPrint's last_modified field