Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2022 | Accepted Version + Published
Journal Article Open

Stellar masses, sizes, and radial profiles for 465 nearby early-type galaxies: An extension to the Spitzer survey of stellar structure in Galaxies (S⁴G)

Abstract

Context. The Spitzer Survey of Stellar Structure in Galaxies (S⁴G) is a detailed study of over 2300 nearby galaxies in the near-infrared (NIR), which has been critical to our understanding of the detailed structures of nearby galaxies. Because the sample galaxies were selected only using radio-derived velocities, however, the survey favored late-type disk galaxies over lenticulars and ellipticals. Aims. A follow-up Spitzer survey was conducted to rectify this bias, adding 465 early-type galaxies (ETGs) to the original sample, to be analyzed in a manner consistent with the initial survey. We present the data release of this ETG extension, up to the third data processing pipeline (P3): surface photometry. Methods. We produce curves of growth and radial surface brightness profiles (with and without inclination corrections) using reduced and masked Spitzer IRAC 3.6 μm and 4.5 μm images produced through Pipelines 1 and 2, respectively. From these profiles, we derive the following integrated quantities: total magnitudes, stellar masses, concentration parameters, and galaxy size metrics. We showcase NIR scaling relations for ETGs among these quantities. Results. We examine general trends across the whole S⁴G and ETG extension among our derived parameters, highlighting differences between ETGs and late-type galaxies (LTGs). The latter are, on average, more massive and more concentrated than LTGs, and subtle distinctions are seen among ETG morphological subtypes. We also derive the following scaling relations and compare them with previous results in visible light: mass-size (both half-light and isophotal), mass-concentration, mass-surface brightness (central, effective, and within 1 kpc), and mass-color. Conclusions. We find good agreement with previous works, though some relations (e.g., mass-central surface brightness) will require more careful multicomponent decompositions to be fully understood. The relations between mass and isophotal radius and between mass and surface brightness within 1 kpc, in particular, show notably small scatter. The former provides important constraints on the limits of size growth in galaxies, possibly related to star formation thresholds, while the latter–particularly when paired with the similarly tight relation for LTGs–showcases the striking self-similarity of galaxy cores, suggesting they evolve little over cosmic time. All of the profiles and parameters described in this paper will be provided to the community via the NASA/IPAC database on a dedicated website.

Additional Information

© ESO 2022. Received: 9 November 2021 Accepted: 18 January 2022. AW acknowledges support from the STFC [ST/S00615X/1]. SC acknowledges funding from the State Research Agency (AEI-MCINN) of the Spanish Ministry of Science and Innovation under the grants "The structure and evolution of galaxies and their central regions" with reference PID2019-105602GB-I00/10.13039/501100011033, and "Thick discs, relics of the infancy of galaxies" with reference PID2020-113213GA-I00. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 893673 (SDG), as well as grant agreement No. 721463 to the SUNDIAL ITN network (AHS, HS, JHK), from the State Research Agency (AEI-MCINN) of the Spanish Ministry of Science and Innovation under the grant "The structure and evolution of galaxies and their central regions" with reference PID2019-105602GB-I00/10.13039/501100011033, and from the IAC project P/300724 which is financed by the Ministry of Science and Innovation, through the State Budget and by the Canary Islands Department of Economy, Knowledge and Employment, through the Regional Budget of the Autonomous Community. EA and AB gratefully acknowledge financial support from CNES (Centre National d'Études Spatiales, France). LCH is supported by the National Science Foundation of China (11721303 and 11991052) and the National Key R&D Program of China (2016YFA0400702). TK acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A3A02062242). KMD thanks the support of the Serrapilheira Institute (grant Serra-1709-17357) as well as that of the Brazilian National Council for Scientific and Technological Development (CNPq grant 312702/2017-5) and of the Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ grant E-26/203.184/2017), Brazil. This work is based on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology. This work made use of the Python packages Numpy (Harris et al. 2020), Scipy (Virtanen et al. 2020), and Matplotlib (Hunter 2007). We thank Jarkko Laine for providing us with some of the IRAF scripts used to produce the radial profiles discussed in MM2015, which were critical to us for keeping the methodology consistent across such a gap of time. Finally, we thank the anonymous referee for their valuable feedback.

Attached Files

Published - aa42627-21.pdf

Accepted Version - 2201.08381.pdf

Files

2201.08381.pdf
Files (9.9 MB)
Name Size Download all
md5:bacca8064f212f2bfc6c69f7ca84971f
3.9 MB Preview Download
md5:b70d724715095d5fded642db851676a9
6.0 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023