Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2022 | Submitted + Supplemental Material
Journal Article Open

Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider

Abstract

To study the physics of fundamental particles and their interactions, the Large Hadron Collider was constructed at CERN, where protons collide to create new particles measured by detectors. Collisions occur at a frequency of 40 MHz, and with an event size of roughly 1 MB it is impossible to read out and store the generated amount of data from the detector and therefore a multi-tiered, real-time filtering system is required. In this paper, we show how to adapt and deploy deep-learning-based autoencoders for the unsupervised detection of new physics signatures in the challenging environment of a real-time event selection system at the Large Hadron Collider. The first-stage filter, implemented on custom electronics, decides within a few microseconds whether an event should be kept or discarded. At this stage, the rate is reduced from 40 MHz to about 100 kHz. We demonstrate the deployment of an unsupervised selection algorithm on this custom electronics, running in as little as 80 ns and enhancing the signal-over-background ratio by three orders of magnitude. This work enables the practical deployment of these networks during the next data-taking campaign of the Large Hadron Collider.

Additional Information

© 2022 Nature Publishing Group. Received 12 August 2021; Accepted 06 January 2022; Published 23 February 2022. This work is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 772369) and the ERC-POC programme (grant no. 996696). Data availability: The data used in this study are openly available at Zenodo57,58,59,60,62. Code availability: The QKeras library is available at github.com/google/qkeras, where the work presented here is using QKeras version 0.9.0. The hls4ml library with custom layers used in the paper are under AE_L1_paper branch and available at https://github.com/fastmachinelearning/hls4ml/tree/AE_L1_paper. Contributions: V.L., M.P., A.A.P., N.G., M.G., S.S., J.D. and Z.W. conceived and designed the hls4ml software library. M.P., T.Q.N. and Z.W. designed and prepared the dataset format. E.G., E.P., T.A., T.J., V.L., M.P., J.N., T.Q.N. and Z.W. designed and implemented autoencoders in hls4ml. E.G., E.P., T.A., T.J., M.P. and J.D. wrote the paper. The authors declare no competing interests. Peer review information: Nature Machine Intelligence thanks the anonymous reviewers for their contribution to the peer review of this work.

Attached Files

Submitted - 2108.03986.pdf

Supplemental Material - 42256_2022_441_Fig4_ESM.webp

Supplemental Material - 42256_2022_441_Fig5_ESM.webp

Files

2108.03986.pdf
Files (4.8 MB)
Name Size Download all
md5:d259664bd29935c6aff31e767c383db9
131.5 kB Download
md5:38213d784933364c3395b426fc0b3aa2
4.3 MB Preview Download
md5:cf9d6b6bec3b5f5564eb9544f6550b7c
410.8 kB Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023