Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 5, 2022 | Accepted Version + Published
Book Section - Chapter Open

Simulating the study of exoplanets using photonic spectrographs

Abstract

Photonic spectrographs offer a highly miniaturized, flexible, and stable on-chip solution for astronomical spectroscopy and can be used for various science cases such as determining the atmospheric composition of exoplanets to understand their habitability, formation, and evolution. Arrayed Waveguide Gratings (AWGs) have shown the best promise to be used as an astrophotonic spectrograph. We developed a publicly-available tool to conduct a preliminary examination of the capability of the AWGs in spectrally resolving exoplanet atmospheres. We derived the Line-Spread- Function (LSF) as a function of wavelength and the Full-Width-at-Half-Maximum (FWHM) of the LSF as a function of spectral line width to evaluate the response of a discretely- and continuously sampled low-resolution AWG (R ~ 1000). We observed that the LSF has minimal wavelength dependence (~5%), irrespective of the offset with respect to the center-wavelengths of the AWG channels, contrary to the previous assumptions. We further confirmed that the observed FWHM scales linearly with the emission line width. Finally, we present simulated extraction of a sample molecular absorption spectrum with the discretely- and continuously-sampled low-resolution AWGs. From this, we show that while the discrete AWG matches its expected resolving power, the continuous AWG spectrograph can, in principle, achieve an effective resolution significantly greater (~ 2x) than the discrete AWG. This detailed examination of the AWGs will be foundational for future deployment of AWG spectrographs for astronomical science cases such as exoplanet atmospheres.

Additional Information

© 2022 Society of Photo-Optical Instrumentation Engineers (SPIE). M. Perez acknowledges the support from Caltech Summer Undergraduate Research Fellowship (SURF) program and the funding provided by the Flintridge Foundation for his work in the summer of 2021. P. Gatkine was supported by NASA Hubble Fellowship program as well as David & Ellen Lee Fellowship at Caltech. This work was supported by the Wilf Family Discovery Fund in Space and Planetary Science, funded by the Wilf Family Foundation. This research was carried out at the California Institute of Technology and the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration (NASA) and funded through the President's and Director's Research & Development Fund Program.

Attached Files

Published - 120080C.pdf

Accepted Version - 2203.10153.pdf

Files

120080C.pdf
Files (3.9 MB)
Name Size Download all
md5:c51de785ce2b7ab93602ed86347fd37d
2.1 MB Preview Download
md5:86d09063badf5cc4301e9cd513226be4
1.9 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
January 15, 2024