Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 26, 2020 | Supplemental Material + Published
Journal Article Open

Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown

Abstract

Posttranscriptional gene silencing (PTGS) is a powerful tool to understand and control plant metabolic pathways, which is central to plant biotechnology. PTGS is commonly accomplished through delivery of small interfering RNA (siRNA) into cells. Standard plant siRNA delivery methods (Agrobacterium and viruses) involve coding siRNA into DNA vectors and are only tractable for certain plant species. Here, we develop a nanotube-based platform for direct delivery of siRNA and show high silencing efficiency in intact plant cells. We demonstrate that nanotubes successfully deliver siRNA and silence endogenous genes, owing to effective intracellular delivery and nanotube-induced protection of siRNA from nuclease degradation. This study establishes that nanotubes could enable a myriad of plant biotechnology applications that rely on RNA delivery to intact cells.

Additional Information

© 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Received: 7 August 2019. Accepted: 8 May 2020. We acknowledge support of a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a Stanley Fahn PDF Junior Faculty Grant with award no. PF-JFA-1760, a Beckman Foundation Young Investigator Award, a USDA AFRI award, a USDA NIFA award, the Moore Foundation, and an FFAR New Innovator Award (to M.P.L.). M.P.L. is a Chan Zuckerberg Biohub investigator. G.S.D. is supported by a Schlumberger Foundation Faculty for the Future Fellowship. We acknowledge the support of University of California Berkeley Molecular Imaging Center, the QB3 Shared Stem Cell Facility, and the Innovative Genomics Institute (IGI). Author contributions: G.S.D. and M.P.L. conceived the project, designed the study, and wrote the manuscript. G.S.D. performed most of the experiments and data analysis. H.Z. performed Western blot studies and helped with qPCR experiments. N.S.G. performed TIRF experiments and analyzed TIRF data. R.L.P. contributed to the thermodynamic analysis of RNA desorption and hybridization. R.C. prepared some of the RNA-SWNT suspensions used in the studies. All authors have edited and commented on the manuscript and have given their approval of the final version. The authors declare that they have no competing interests. Data and materials availability: The DNA sequence of the GFP gene silenced in this study is added as data S1 file in the FASTA format. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Attached Files

Published - sciadv.aaz0495.pdf

Supplemental Material - aaz0495_sm.pdf

Files

sciadv.aaz0495.pdf
Files (5.8 MB)
Name Size Download all
md5:db2e980c1fba8656eee9077376b13557
4.0 MB Preview Download
md5:57241285276ce04dc9f4469ff822d725
1.9 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023