Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 1, 2022 | Submitted
Report Open

Shapes of Milky-Way-Mass Galaxies with Self-Interacting Dark Matter

Abstract

Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section σ/m. We compare the shape of the main dark matter (DM) halo at redshift z = 0 predicted by SIDM simulations (at σ/m = 0.1, 1, and 10 cm² g⁻¹) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on σ/m. This transition could potentially be used to set limits on the SIDM cross-section in the MW.

Additional Information

Attribution 4.0 International (CC BY 4.0). RES acknowledges support from NASA grant 19-ATP19-0068 and HST-AR-15809 from the Space Telescope Science Institute (STScI), which is operated by AURA, Inc., under NASA contract NAS5-26555. MBK acknowledges support from NSF CAREER award AST-1752913, NSF grant AST-1910346, NASA grant NNX17AG29G, and HST-AR-15006, HST-AR-15809, HST-GO-15658, HST-GO-15901, and HST-GO-15902 from STScI. AW received support from NASA through ATP grants 80NSSC18K1097 and 80NSSC20K0513; HST grants GO-14734, AR-15057, AR-15809, and GO-15902 from STScI; a Scialog Award from the Heising-Simons Foundation; and a Hellman Fellowship. ASG is supported by the Harlan J. Smith postdoctoral fellowship. This research is part of the Frontera computing project at the Texas Advanced Computing Center (TACC). Frontera is made possible by National Science Foundation award OAC-1818253. Simulations in this project were run using Early Science Allocation 1923870, and analysed using computing resources supported by the Scientific Computing Core at the Flatiron Institute. This work used additional computational resources of the University of Texas at Austin and TACC, the NASA Advanced Supercomputing (NAS) Division and the NASA Center for Climate Simulation (NCCS), and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. DATA AVAILABILITY. The simulations used for this study are currently proprietary to members of the FIRE collaboration. Please contact the authors if interested.

Attached Files

Submitted - 2104.14069.pdf

Files

2104.14069.pdf
Files (17.3 MB)
Name Size Download all
md5:2370307722bf35dd11ec0d2f86bb7c1d
17.3 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023