Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 28, 2022 | Submitted
Report Open

Topological frequency conversion in Weyl semimetals

Abstract

We show that a Weyl semimetal irradiated at two distinct frequencies can convert energy between the frequencies at a potentially large rate. The phenomenon is a realization of topological frequency conversion from [Martin et al, PRX 7 041008 (2017)]. When the effect is realized, each electron near a Weyl point acts as a topological frequency converter, and converts energy at a universal rate given by Planck's constant multiplied by the product of the two frequencies. Our results indicate that Weyl points in TaAs support topological frequency conversion in the THz regime at achievable intensities of order 100 W/mm2. When the topological energy conversion rate exceeds the dissipation rate, the effect can be used for optical amplification. This amplification regime can be achieved when the relaxation rate of the system is larger than the characteristic driving period. This phenomenon further amplifies Weyl semimetals' promise for optical amplification and terahertz (THz) generation.

Additional Information

We thank Mark Rudner, Prineha Narang, Chris Ciccarino, and N. Peter Armitage for valuable discussions. FN gratefully acknowledges the support of the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation Programme (Grant Agreement No. 678862) and the Villum Foundation. IM was supported by the Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy. GR is grateful for support from the Simons Foundation as well as support from the NSF DMR grant number 1839271. This work is supported by ARO MURI Grant No. W911NF-16-1-0361, and was performed in part at Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611.

Attached Files

Submitted - 2201.07804.pdf

Files

2201.07804.pdf
Files (2.5 MB)
Name Size Download all
md5:0401de34088c76514933554b7818c82b
2.5 MB Preview Download

Additional details

Created:
September 15, 2023
Modified:
October 23, 2023