Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 1, 2022 | Submitted
Report Open

Robust Safe Control Synthesis with Disturbance Observer-Based Control Barrier Functions

Abstract

In a complex real-time operating environment, external disturbances and uncertainties adversely affect the safety, stability, and performance of dynamical systems. This paper presents a robust stabilizing safety-critical controller synthesis framework with control Lyapunov functions (CLFs) and control barrier functions (CBFs) in the presence of disturbance. A high-gain input observer method is adapted to estimate the time-varying unmodelled dynamics of the CBF with an error bound using the first-order time derivative of the CBF. This approach leads to an easily tunable low order disturbance estimator structure with a design parameter as it utilizes only the CBF constraint. The estimated unknown input and associated error bound are used to ensure robust safety and exponential stability by formulating a CLF-CBF quadratic program. The proposed method is applicable to both relative degree one and higher relative degree CBF constraints. The efficacy of the proposed approach is demonstrated using a numerical simulations of an adaptive cruise control system and a Segway platform with an external disturbance.

Attached Files

Submitted - 2201.05758.pdf

Files

2201.05758.pdf
Files (827.5 kB)
Name Size Download all
md5:6ac73abffc77fb350f33b5166f0f10f7
827.5 kB Preview Download

Additional details

Created:
September 15, 2023
Modified:
December 13, 2023