Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 10, 2022 | public
Journal Article

Systematic fuzzy Navier–Stokes equations for aerospace vehicles

Abstract

Purpose: To prove the effectiveness of the proposed design method, this study aims to propose the Fisher equation and temperature cooling fins that control high-speed aerospace vehicles. Design/methodology/approach: A new approach whereby the control of aerospace vehicles can be achieved by fuzzy controller and appropriate Navier–Stokes equations in this article. The design of the controller based on models of Navier–Stokes equations simplified complex mathematical simulations and approximations. Findings: If the fuzzy controller cannot stabilize the system, the Navier–Stokes fuzzy function is injected into the system as a controller tool, and the system is asymptotically stabilized by adjusting the fuzzy parameters. Originality/value: The simulation results show that if the tuning frequency is high enough, the fuzzy controller and fuzzy observer can create chaotic movements by adjusting the dither amplitude appropriately. The demonstration of the Fisher equation and the temperature-cooled fin control problem for high-speed aerospace vehicles has displayed the benefits of combining fuzzy control with the Navier–Stokes equation.

Additional Information

© 2021, Emerald Publishing Limited. The authors are grateful for the research grants given to Yahui Meng from the Provincial key platforms and major scientific research projects of universities in Guangdong Province, Peoples R China under Grant No. 2017GXJK116, and the research grants given to ZY Chen from the Projects of Talents Recruitment of GDUPT (NO. 2021rc002) in Guangdong Province, Peoples R China No. 2021rc002 as well as to the anonymous reviewers for constructive suggestions.

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023