Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 17, 2022 | Published + Submitted
Journal Article Open

Galactic star formation with NIKA2 (GASTON): Filament convergence and its link to star formation

Abstract

In the past decade filaments have been recognised as a major structural element of the interstellar medium, the densest of these filaments hosting the formation of most stars. In some star-forming molecular clouds converging networks of filaments, also known as hub filament systems, can be found. These hubs are believed to be preferentially associated to massive star formation. As of today, there are no metrics that allow the systematic quantification of a filament network convergence. Here, we used the IRAM 30m NIKA2 observations of the Galactic plane from the GASTON large programme to systematically identify filaments and produce a filament convergence parameter map. We use such a map to show that: i. hub filaments represent a small fraction of the global filament population; ii. hubs host, in proportion, more massive and more luminous compact sources that non-hubs; iii. hub-hosting clumps are more evolved that non-hubs; iv. no discontinuities are observed in the properties of compact sources as a function of convergence parameter. We propose that the rapid global collapse of clumps is responsible for (re)organising filament networks into hubs and, in parallel, enhancing the mass growth of compact sources.

Additional Information

© The Authors, published by EDP Sciences, 2022. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. NP and AJR would like to thank the STFC for financial support under the consolidated grant numbers ST/N000706/1 and ST/S00033X/1, and the Royal Society for providing computing resources under Research Grant number RG150741. We would like to thank the IRAM staff for their support during the campaigns. The NIKA2 dilution cryostat has been designed and built at the Institut Néel. In particular, we acknowledge the crucial contribution of the Cryogenics Group, and in particular Gregory Garde, Henri Rodenas, Jean Paul Leggeri, Philippe Camus. This work has been partially funded by the Foundation Nanoscience Grenoble and the LabEx FOCUS ANR-11-LABX-0013. This work is supported by the French National Research Agency under the contracts "MKIDS", "NIKA" and ANR-15-CE31-0017 and in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02). This work has benefited from the support of the European Research Council Advanced Grant ORISTARS under the European Union's Seventh Framework Programme (Grant Agreement no. 291294). F.R. acknowledges financial supports provided by NASA through SAO Award Number SV2-82023 issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060.

Attached Files

Published - epjconf_mmUniverse2021_00037.pdf

Submitted - 2111.03618.pdf

Files

2111.03618.pdf
Files (2.9 MB)
Name Size Download all
md5:c86cf020d6dab1c220227168341bb650
1.6 MB Preview Download
md5:f33b3bac124cde0e9908849ca83a9a62
1.3 MB Preview Download

Additional details

Created:
September 15, 2023
Modified:
October 23, 2023