Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 17, 2022 | Published + Accepted Version
Journal Article Open

Crab nebula at 260 GHz with the NIKA2 polarimeter: Implications for the polarization angle calibration of future CMB experiments

Abstract

The quest for primordial gravitational waves enclosed in the Cosmic Microwave Background (CMB) polarization B-modes signal motivates the development of a new generation of high sensitive experiments (e.g. CMBS4, LiteBIRD), thus allowing to probe the inflationary epoch in the early Universe. However, this will be only possible by ensuring a high control of the instrumental systematic effects and an accurate absolute calibration of the polarization angle. The Crab nebula is known to be a polarization calibrator on the sky for CMB experiments. Already used for the Planck satellite it exhibits a high polarized signal at microwave wavelengths. In this work we present Crab polarization observations obtained, in the 260 GHz frequency band, with the NIKA2 instrument. Furthermore, we discuss the accuracy needed on such a measurement to improve the constraints on the absolute angle calibration for CMB experiments.

Additional Information

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). Published online: 17 January 2022. We would like to thank the IRAM staff for their support during the campaigns. The NIKA2 dilution cryostat has been designed and built at the Institut Néel. In particular, we acknowledge the crucial contribution of the Cryogenics Group, and in particular Gregory Garde, Henri Rodenas, Jean Paul Leggeri, Philippe Camus. This work has been partially funded by the Foundation Nanoscience Grenoble and the LabEx FOCUS ANR-11-LABX-0013. This work is supported by the French National Research Agency under the contracts "MKIDS", "NIKA" and ANR-15-CE31-0017 and in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02). This work has benefited from the support of the European Research Council Advanced Grant ORISTARS under the European Union's Seventh Framework Programme (Grant Agreement no. 291294). F.R. acknowledges financial supports provided by NASA through SAO Award Number SV2-82023 issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060.

Attached Files

Published - epjconf_mmUniverse2021_00042.pdf

Accepted Version - 2111.02143.pdf

Files

epjconf_mmUniverse2021_00042.pdf
Files (6.7 MB)
Name Size Download all
md5:af8be3064bcad1e5f0a75b33e376ac42
1.4 MB Preview Download
md5:679e12f9e379ff9af2fb0fdaedc5c2e2
5.3 MB Preview Download

Additional details

Created:
September 15, 2023
Modified:
October 23, 2023