Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 10, 2022 | Published + Accepted Version
Journal Article Open

The Rate, Amplitude, and Duration of Outbursts from Class 0 Protostars in Orion

Abstract

At least half of a protostar's mass is accreted in the Class 0 phase, when the central protostar is deeply embedded in a dense, infalling envelope. We present the first systematic search for outbursts from Class 0 protostars in the Orion clouds. Using photometry from Spitzer/IRAC spanning 2004 to 2017, we detect three outbursts from Class 0 protostars with ≥2 mag changes at 3.6 or 4.5 μm. This is comparable to the magnitude change of a known protostellar FU Ori outburst. Two are newly detected bursts from the protostars HOPS 12 and 124. The number of detections implies that Class 0 protostars burst every 438 yr, with a 95% confidence interval of 161 to 1884 yr. Combining Spitzer and WISE/NEOWISE data spanning 2004–2019, we show that the bursts persist for more than nine years with significant variability during each burst. Finally, we use 19–100 μm photometry from SOFIA, Spitzer, and Herschel to measure the amplitudes of the bursts. Based on the burst interval, a duration of 15 yr, and the range of observed amplitudes, 3%–100% of the mass accretion during the Class 0 phase occurs during bursts. In total, we show that bursts from Class 0 protostars are as frequent, or even more frequent, than those from more evolved protostars. This is consistent with bursts being driven by instabilities in disks triggered by rapid mass infall. Furthermore, we find that bursts may be a significant, if not dominant, mode of mass accretion during the Class 0 phase.

Additional Information

© 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Received 2021 September 23; revised 2021 December 6; accepted 2021 December 21; published 2022 January 12. We thank the referee for insightful comments. This work uses observations from the Spitzer Space Telescope, operated by JPL/Caltech under a contract with NASA. This paper also uses data from the Wide-field Infrared Survey Explorer, a joint project of the University of California, Los Angeles, and JPL/Caltech, funded by NASA. Observations were also made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NNA17BF53C, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Finally, this work makes use of the NASA/IPAC Infrared Science Archive, operated by JPL/Caltech under a contract with NASA. S.T.M. and R.A.G. were supported by the NASA ADAP grant 80NSSC19K0591, and S.T.M. was supported by the NASA ADAP grant 80NSSC20K0454. R.P. was supported by the NASA ADAP grant 80NSSC18K1564. Support for W.J.F. was provided by NASA through award #07_0200 issued by USRA. A.S. gratefully acknowledges funding support through Fondecyt Regular (project code 1180350), from the ANID BASAL project FB210003, and from the Chilean Centro de Excelencia en Astrofísica y Tecnologías Afines (CATA) BASAL grant AFB-170002. M.O. acknowledges support from the Spanish MINECO/AEI AYA2017-84390-C2-1-R (co-funded by FEDER) and MCIN/AEI/10.13039/501100011033 through the PID2020-114461GB-I00 grant, and from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). This work was completed while STM was a Fulbright Scholar hosted by AS at the Universidad de Concepcíon. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Facilities: Spitzer - Spitzer Space Telescope satellite, SOFIA - , Herschel - , WISE - , NEOWISE. Software: IDL Astronomy Users' Library (Landsman 1993), Matplotlib (https://doi.org/10.1109/MCSE.2007.55).

Attached Files

Published - Zakri_2022_ApJL_924_L23.pdf

Accepted Version - 2201.04647.pdf

Files

2201.04647.pdf
Files (9.2 MB)
Name Size Download all
md5:1e0afc0f4725f73b2ac41e425426beb8
3.9 MB Preview Download
md5:0cc1fca39e8df503ff1385ff6e97bce0
5.3 MB Preview Download

Additional details

Created:
September 15, 2023
Modified:
October 23, 2023