Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 14, 2020 | Published
Book Section - Chapter Open

Fast and Guaranteed Safe Controller Synthesis for Nonlinear Vehicle Models

Abstract

We address the problem of synthesizing a controller for nonlinear systems with reach-avoid requirements. Our controller consists of a reference controller and a tracking controller which drives the actual trajectory to follow the reference trajectory. We identify a type of reference trajectory such that the tracking error between the actual trajectory of the closed-loop system and the reference trajectory can be bounded. Moreover, such a bound on the tracking error is independent of the reference trajectory. Using such bounds on the tracking error, we propose a method that can find a reference trajectory by solving a satisfiability problem over linear constraints. Our overall algorithm guarantees that the resulting controller can make sure every trajectory from the initial set of the system satisfies the given reach-avoid requirement. We also implement our technique in a tool FACTEST. We show that FACTEST can find controllers for four vehicle models (3–6 dimensional state space and 2–4 dimensional input space) across eight scenarios (with up to 22 obstacles), all with running time at the sub-second range.

Additional Information

© The Author(s) 2020. This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. First Online: 14 July 2020. The authors acknowledge support from the DARPA Assured Autonomy under contract FA8750-19-C-0089, the Air Force Office of Scientific Research under grant AFOSR FA9550-17-1-0236, and the National Science Foundation under grant NSF CCF 1918531. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Attached Files

Published - Fan_2020p652.pdf

Files

Fan_2020p652.pdf
Files (1.9 MB)
Name Size Download all
md5:20289f9db76347f2623a4bdea8947807
1.9 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 15, 2024